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'.RRATA

Chapter 4

pages 4-43, 4-44, 4-45; "I,OCTRH" to read as "LOCA'IqON"

page 4-56, after last line should b(: appended:

"2. l]andling of the special coustructs used to change

terl_il]al characteri_:tics and tile system's responses

to tile terminals."

Chapter 5

page 5-12, under P hffsica]; should read as "Size: ]..2" x

I]..5" × 27.5"

page 5-38, under Stonra_g_e_ Ca__Dacities ; shou]d rudd as "65,536

wo rd s/rood u i e"

page 5-53, under #4, line 3 to read as "000000011"

page 5-54 bottom of page. The modified equation i._

Port = 32 x (EMno NOD 512) + 2 x (EMno MOI)4) + 1

for 5112 < ,'2,1no < 527

which al lows better distribution of the spare
module:s.

Chapter 7

page 7-7, paragraph 4, line 7; "CU" should read as "C]{"

page 7-18, paragraph ] ; line 5 should read as "would appre-

ciably improve throughput."

Appendix A

page A-3, equation A.]. fi and t i are the number of floating

point operations and the execution time of the ith

piece, respectively.

page A-23, third bullet, line i; "The correct algorithm" should

read as "The given alg_o_r_i_"

page A-35, paragraph 2, line 2; LAX should be deleted.

page A-40, paragraph 2, line 4 "NJ(J) should read as NM(J)"

page A-59, paragraph 2, line 8 should read as "the physical

problem needs to be retained"

page A-63, second equation "TEM=I44 '' should read as "TEM + 144"



ERRATA(Continued)

AppendixB

page B-32, "60%" column, "Double Omega, 512/512" row,

"0.504" should read as "0.0504".

page B-40, paragraph 2, line 2; "of that" should read as

"of requests that".

page B-45, paragraph 4, lille 5; "0 i I0" should read as
0 -< i _.i0"

Appendix C

page C-8, paragraph i, line 9; "SOTREM" should read as STOREM"

page C-24, under LOADEM, line 2; "TN" should read "CN".

page C-27, Under FILLRE; "FILIR" should read "FILLR".

page C-40, line 4; "CTIX_" to read as "CTIXI"

Appendix D

page D-10 paragraph i, lines 6, 7, 8; "Hence, (I-F1) is the

fractSon of failures that cause a transition

directly into the INTERRUPT state, " should be

deleted.

page D-12, under _IME BETWEEN FAILUPES (PERMANENT), line 3;

"intermittant type device failure" to read as

"permanent type device failure".

Appendix F

page F-39, paragraph 5, line 9, "15,38K" to read as "15.38K".

Appendix H

page H-15, equation H.3 to read as P(A-UPPERffil) = P(INPUT) x

P(0-BIT=I) x P(I-BIT=I)
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I NTI_,ODU CT 1 ON

This report pL-e s,;n ts the results oi_ Burroughs ('orl)orat _ ,,n ' s

efforts on the Feasibility Study for t:Jl___ Numericd] A_;rodyllaluJc

Simulation Facility (NASF). The study has dc, lnolmtrat,_d that a

particular form and architecture for the NAS[ _ (p_:opo:;ed ,miginaLly

during the Preliminary Study [i, 2] and improv__d during t.hc

present study) would meet the established objectives. The

Numerical Aerodynamic Simulation Facility is conceived t,) b(! m,_re

t}lan just a very high-speed computing machine. The Jac]Jity i:uJ:_t

also include all that is required to supl?ort the us_-Is c_l such ,_

hzgh-speed capability, 'Phe I easibility study _-,.,]ui_-,:.]

consideratiou of all parts of the proposed NAHF sy:]ttl,a. '|'hm _h_utll

of study of each part of the system varied d(;L_,,iMin. I el) Lll_-

com]2]_exity of that ])art of the system, on the impact of L Jlat p_Jrt

on the systel_ capabilities and on wht_ther or not thc_rc wa:_

suffici_nt prior knowledge about how to implement that pa_:t el tlJ{:

system.

The evaluations performed as part of th_ study focused ou th__:(-

major issues. FiL'st the ability of the _ropos_d system archit_:c-

ture to support the anticipate(] workload was (:valuated. _eeond,

th_ t h t-oug hput o[ the computationa] engine (t h,." F]_)w Mode]

Proces,_;or) was stu_lied using real application programs. ']'}_]r_],

the availability r<.li,_b[lity, and maintainability of the system

wer(_ modeled. The eva l uations were based on tht, Baseline SystoH]s

of the Preliminary StudJ._s [i, 2] as modified where aPl_ropriate

during this study.

The results of these evaluations show that the implementation of

the: NASF, in the form c(_nsidered, would indeed b(: a feas/blt' pro-

ject with an acceptable level of risk. The technology requ_ red

(both hardware an(] software) either already exists or, in the case

of a few parts, is expected to be announce(] this year.

This report describes many o[ the details of the system including

the hardware configuration, user language, software, fault toler-

ance, and other aspects el the system on which this demonstration

of feasibility is based. The first chapter summarizes the study

objectives the evaluations made and the rusult:_. The NASF system

architecture, which is the basis of discussion throughout the

report, is described in Chapter 2. The system-level Loading anal-

ysis performed as part of the study is summarized in Chapter 2

while Chapter 3 reports on the results of timing actual cod<::-{ f<_<

the configurations assumed. The NASF Software and Hardware ,h,ve-

lopments are detai Led in Chapters 4 and 5. The vario,_s m(),.h_'ls

used to evaluate reliability, availability, maintainability, trusL-

worthiness an(] the results of that detailed evaluat [on a_:('

included in Chapter 6. Chapter 7 describes the models wi_i.ch have

been used use(] during Flow Model Processor (FMP) in:_t l-uct i(_n

timing simulations. The report concludes with a chapLe[ which

identifies some o[ the management and control tcchniqu(,s which

couhq be used to eventual ly manage a project of this scope, l:w,n

more detail concerning most of the art, as d_scussed in t_e _-<'_),n-t

is includ_ed in the Appendices. Each of the chapt{:_s in,:]ud<,,_; .u_

introductory section which can be scanned to gain a g(:n,,ra ]

perception of each parr o[ the project after reading Chaptor I.

iii
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CHAPTER i

STUDY OBJECTIVES AND RESULTS

I.i STUDY OBJECTIVES

The principal objective of the study has been to consider the

feasibility that a facility (NASF), which could support a through-

put well in excess of what would be commercially available, could

be implemented. In particular, the goal is to have a system where

time-averaged Navier-Stokes computation can be performed in 10

minutes or less (on steady fluid flow problems involving a million

grid points). Not only is this throughput goal important, but

since the intent of the facility is to support daily usage by a

large user community, the NASF system availability needs to be

better than 90% and the facility needs to be nominally available

for 22 hours a day. In order that the NASF may support long runs,

the mean time between interruptions should be longer than ten

hours. In some cases, an alternate form o£ the throughput goal

can be used. A sustained, average rate of execution of one

billion floating point operations per sucond (one gigaflop/sec or

I GFLOPS) corresponds roughly to the problem throughput desired on

the aerodynamic flow codes.

The starting point of the effort in this study was thu baseline

configuration developed during the Preliminary Study under

contract NAS2-9456 [1,2]. The overall goal was to gain an under-

standing of the characteristics, capabilities, and potential of

the facility in order to make a judgment as to its feasibility.

_le study required the development of further specifications in

order to consider the responsiveness to the desired application of

the facility and to develop estimates of the schedule, cost, and

risk of such a development.

Both functional and performance (timing) simulators were developed

to be able to estimate (as accurately as possible) performance and

reliability of the system. Although the primary application of

the facility is likely to be aerodynamic £1ow modeling, the perfor-

mance studies included both aerodynamic flow codes and weather

modeling codes. The use of real programs in these application

areas allowed an initial evaluation of the flexibility of the

langu._ge constructs proposea. _is evaluation was especially

important since the facility needs to be sufficiently flexible

that algorithm development could be supported for fluid dynamics

algorithms as yet not investigated. In addition, the diverse user

needs for input, output, and algorithm investigation must be

supported.

Since the development of the baseline systems considered only aero-

dynamic flow modeling applications, the consideration of weather

modeling codes was especially important. This consideration was

used to evaluate the flexibility of the system as far as its

support of other, related application areas and was used to deter-

mine whether further improvements might be needed to support these

additional applications.

I-i
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AlL of the goals could be met by tile system described as a

possible NASF configuration. No hardware modifications would be
needed for weather code optih_ization. Some minor software exten-

sions were proposed based un the weather code evaluations.

1.2 SYSTEM DESCRIPTION

Before describing the system evaluated during this study, the

importance of considering all aspects of the facility must be

emphasized. During the development of the system, the focus tends

to be on the hardware and system software (such as operating
systems and compilers). As shown in Figure I.i, such a focus is

limited. If only the system expense is considered, the other
areas important to the successful utilization of the facility may

be slighted. In particular users themselves face both the

expense of their training in the use of the system and the day to

day expense of developing and using their various application

programs. This usage would include algorithm development, program-

ining, model description data reduction, and so on. The users

must be supported by a staff and whatever other support might be
needed to keep the facility operational. Such support might

include operators, power, cooling, training and supplies.
Although the cor,sideration of all these factors complicates the

development of the facility, these factors must be carefully

considered in order to have a facility that would not only be

economical to acquire but also be economical to use. The system
described below did consider these factors.

USERS

WITH

PROBLEMS 1

MANUFACTURER

USER_ATOR

USERS

=,WITH

ANSWERS

Figure i.i Total Cost of NASF Usage
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1.2.1 Hardware

The system originally defined during the Preliminary Studies and

modified during this study is shown conceptually in Figure 1.2.

The Flow Model Processor (FMP), which provides the required

computational power, is a dedicated computing engine with an

architecture based on the special needs of modeling. The Supporl
Processor the Peripheral Support System and the File System

together constitute the Support Processing System. The Support

Processing System interfaces with the users, maintains the data

files, and controls the flow of jobs and data to and from the FMP.

Not l_hown in the figure are the support elements including

building, power, office space and cooling.

The architecture of the Flow Model Processor is based on the needs

of discrete modeling and simulation. The FMP, which is described
in more detail later, has 512 processors that normally wouh]

execute independent of, and concurrent with each other. A coordi-

nator is used to allow the processors to execute in synchron-

ism. The processors each have memory space for programs and data.

In addition, a large memory (called the Extended Memory) can be

accessed by all processors through a high-speed network called the

Connection Network. The Extended Memory normally would contain
the data common to the processes being independently evaluated

Figure 1.2 NASF Organization

1-3
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each of the processors. Finally a slower staging memcJry (called

Data Base Memory) would be provided to hold the next job, the last

job and the current job. The Data Base Memory buffers programs
and data in order to provide a smooth flow of tasks to and from

the FMP. The memory sizes assumed during the study were based on

the aerodynamic flow codes that are expected to be the primary

application on the FMP.

The Support Processing System would consist of three portions; the

Support Processor, the File System, and the Peripheral Support

System. The Support Processor (the host proce,_sor) would run the
main portion of the operating system (called uhe Master Control

Program). A dual-processor B7800 was assumed for evaluation

purposes. Most of the user interaction with the NASF would be
through the Support Processor. The File System includes disk

packs, an archival store, and the manager of the files. Data
paths to and from the files would exist for the FMP, for the

Support Processor, and for user support. The third element

considered as part of the Support Processing System is the

Peripheral Support System. The Peripheral Support System has been
included because the evaluations performed in the study demon-

strated that at least one of the supportive tasks involved such a

level of work that a special processor for that task should be

considered. In particular the evaluations demonstrated an except-

ionally heavy load can be expected to support Computer Output to

Microfilm (COM). This load may be in excess of 10,000 frames of

graphic information per day. The Peripheral Support System would
include facilities specially designed to support such exceptional

loads in order to improve the load balance across the entire

facility.

I. 2.2 Software

Not _hown in Figure 1.2 is the software which would be used to

support users and to control the efficient usage of the resources

within the facility. A dialect of FORTRAN, called FMP FORTRAN,

has been proposed which has a few simple extensions to standard
FORTRAN. These extensions provide application-oriented approaches

to use both the independent, concurrent mode of operatiun. In

addition, statements are included which are capable of using a

large number of processors at once on a single computation. Since

the Support Processor would be a commercially available processor,
standard languages such as ALGOL, FORTRAN, and COBOL would be used

for process definition on that processor. The File System would
not be programmed by the users, but would provide high-level file

management and access capabilities.

The NASF operating system (called the Master Control Program, or

MCP) would reside, in part, on all elements of the system. Since

the Master Control Program (MCP) would be based on existing

software, the major portion would reside on the Support Processor.

The portion of the MCP on the FMP would manage the flow of jobs

within the FMP and would be the primary focus of con[idence and

diagnostic procedures wi{hln the FMP.



i._.3 Fault Tolerance

Since the FMP will have between 200,000 and 250,000 integrated

circuits, plus other components, both hard failures and transient

failures can be expected. Means for preserving the integrity of

the computation in the face of such failures must be provided.

The level of Large Scale Integration to be used is expected to

bring forth failure modes that have not been important in the

past, such as background radiation which may cause transient
errors in Data Base Memory. Defense against all these possibi-

lities must be included, and has been included in the architecture

described in this report. Where economically feasible, mechanisms
for error correction have been included such as use of single

error correction, double error detection (SECDED) codes in all

memories. To reduce the probability of double errors in those

memories where transient failures may be expected, mechanisms to

"scrub" the memory by rewriting data back into memory with the
errors corrected are provided. For the various types of faults

which can be detected but are not easily corrected, on-line spare

processors and memory modules can be automatically switched in
under control of the MCP to replace failed elements.

Not only was the FMP considered when developing the necessary
fault tolerant aspects of the system. The CPU in the B7800

Support Processor is duplexed, for example, as are the Data
Communications and Input Output Processors. A distributed control

scheme and a multiplicity of disk packs within the File System

serve to keep the system available for useful work without having

each and every one of them available at any given instant. The
automatic recovery procedures in the software not only support the

FMP as mentioned earlier, but exist as a stardard part of the MCP

in the Support Processor.

1.3 NASF EVALUATION

Evaluation of the NASF considered many aspects. Three specific

issues received the major attention in terms of analysis per-

formed. These issues were an evaluation of syszem-level capabili-

ties to support the general work load of the facility, an evalu-
ation of the throughput of the FMP using real programs, and an

analysis of the availability, reliability, and maintainability of
the system. The general approach used for the evaluation and the
results observed is described below for each of these three areas.

As a result of these evaluations and the other work to date, those

areas which contribute to the risks of the program were identi-

fied. These areas, which relate to the assurance of success of

the program are explained below.
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1.3.1 System Utilization Studies

The evaluation of the NASF system organization showed the feasibi-

lity of the system to support the expected workloads. This evalu-

ation was based on a hypothetical, but well thought out, workload
supplied by NASA [4]. System-level models were developed and used

as the basis of the implementation of system analyzer programs.

The models were operationally based so that they may be easily
verified by direct observation of an actual system as development
might progress.

The system-level evaluation included consideration of the
following:

FMP Loading

Support Processor CPU Loading

Average Data Transfer Rates between Files, Users FMP and
Support Processor

Expected number of file management actions such as file

creation, deletion, and accessing.

The results of the evaluation show that the dual-processor B7800

assumed could comfortably handle the expected load with the excep-

tion of the COM support activities discussed earlier. More signif-
icantly, if projection is made to equivalent processors which are

likely to be available before the implementation of the facility,

such processors could handle a significant amount of the COM sup-
port load. The average data transfer rates projected by the anal-

ysis are well below the channel capacities planned. Although more

analysis of peak rate requirements has yet to be performed, the
projections to date are consistent with the expected results.

1.3.2 Flow Model Processor Throughput Evaluation
Throughput of the FMP was evaluated by measuring, in simulation

and by analysis, its performance on complete programs supplied by

NASA. The use of entire programs for measuring performance avoids
a common pitfall in predicting the performance of new and advanced

computers, namely the reliance on throughput evaluations which

look only at the "hard" parts of the problems, which also are by
no coincidence the parts of the problem that the advanced computer
is designed to work best on.

The results of the analysis of the two aerodynamic flow codes

(referred to as aero flow codes) show that the goals for
throughput for aero flow applications are )net. One aero flow

code, identified as the "3D implicit" code was projected to
execute in less than five minutes at a throughput rate of 1.01

billion floating point operations per second. The second aero

flow code, identified as the "3D explicit" code was projected _o

execute in less than seven minutes at a throughput rate of 0.89
billion floating point operations per second. Both codes were

evaluated at the nominal size expected to run on the FMP, specif-
ically one million grid points.



Ii!

/

The results of the analysis of the weather codes shows that the

FMP, as evaluated, is optimized for the weather codes as well.

NASA supplied two weather (or climate) codes. The first was a

version of the Mintz-Arakawa algorithm, as developed by the

Goddard Institute for Space Studies ("GISS" ); the second was a

spectra_ weather code. The same detailed analysis was applied to

the GISS weather that had been applied to the aerodynamic codes.

Fourteen days o_ simulated weather, with 20 minute time steps, in

a 2.5 ° (latitude and longitude) model with a total of 115,334 grid

points, would take 8 minutes to run on the FMP with an effective

throughput rate of 0.53 billion floating point opertions per

second. Scrutiny of the second weather code showed that it could

be expected to run with slightly higher throughput than the GISS

weather, but the detailed analysis was not made.

The analysis was very thorough. All programs evaluated were

dissected into code segments, each of which was internally homo-

geneous. _le throughput was estimated for each individual code

segment. From an analysis of how often each code segment was

executed, the individual throughput estimates were combined into

an overall execution time and throughput rate.

AS a verification of the hand analysis, sections of code were

input to an instruction timing simulator. The code sections

chosen for simulation verified throughput rates ranging from less

than 0.i GFLOPS to more than 1.5 GFLOPS. The instruction timing

simulator was based on a reasonably detailed model of a processor

in the FMP. The instruction times assumed in the model correspond

to what could be expected using good engineering practices and a

modern circuit family such as the Fairchild 100K family of ECL

circuits. The times assumed in the model for access to the common

memory via the Connection Network were based on detailed analysis

of the Connection Network itself. A CN simulator was developed

and used to analyze various access patterns including some taken

from the aero flow codes. A stochastic analyzer was used to

determine the probability of success in making connections. The

stochastic analyzer used probability equations for analysis. Both

methods validate a transfer rate through the connection network of

over one billion words per second from all processors to all

memory modules.

The analysis of the various programs required preparation of _P

FORTRAN versions to be used in the analysis and as the starting

point for hand-compilation onto the instruction timing simulator.

The conversion from the FORTRAN code supplied to FMP FORTRAN was

generally straightforward. In some cases, significant reductions

in the length of the code could be made because of the application-

orientation of FMP FORTRAN.

1-7
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1.3.3 Availability, Reliabilit_ and Maintainability Evaluations

Several methods were used to evaluate the availability, reliabil-

ity, and maintainability of the NASF. The predictions for the FMP

are based upon a computer model of reliability and availability

wi_h assumptions that at, derived from the military standard

methods for estimating rzliability. In an attempt to be as
realistic as possible, field data which included failures due to

system software as well as hardware was used. In addition,
intermittant failure modes were modeled, where the rate of inter-

mittants was based on field experience.

With the fault tolerance mechanisms in place, the availability

forecasts are 99% for the FMP by itself and over 99% for the
Support Processing System. These individual predictions combine

to an NASF availability of over 98%. An estimate of 14.1 hours

between interruptions of processing was also made as a result of

the reliability and availability modeling. These predictions for
the SPS are based on field data for the B7700, which is similar to

the B7800 for reliability and availability.

1.3.4 Program Success Assurance

To assure the success of the NASF project, one must assure success

in all areas. Some areas, being dependent mainly on existing
technology or existing methods, were only briefly addressed during

the study. Other areas of concern, especially where the NASF and

its _P represent a break with past experience, were addressed at

greater length. A discussion of some of the key points addressed
is summarized below.

Although outside the scope of the study, the need for continuing

committment to the successful implementation of the NASF on both

NASA's and the vendor's parts must be carefully considered. The
close technical interaction that was so important to the Prelimin-

ary and Feasibility Studies must be continued. The length of time

from the eventual start of design to delivery of the system is
long. Project attention must be kept firmly on the job at hand.

Continual changes of direction, dilution of effort, and expansion
of goals could make the project seem to have a constant time-to-

completion. This study has shown that a project begun now, with

currently available or imminently expected technology, could

deliver an operational system which would fulfill NASA's
objectives.

Software development could have several potential problem areas.

Software has been notoriously hard to schedule, often because of

incomplete or changing specifications. Software is especially

subject to the temptation to add "just one more little feature"
making the resulting product more and more complex and difficult

to test. This problem must be handled by careful management. The

two major areas of software concern in the NASF are the operating

system, and the language and compiler. The operating system
(called the Master Control Program, MCP) would be based on the
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existing MCP of the B7800 planned as the Support Processor. This

MCP has a history of 19 years of development behind it and is

already being modified by Burroughs to support job flow to the

computational engine for the Burroughs Scientific Processor. With

this work substantially complete, the integration of the FHP

becomes a task with much less risk.

Compiler development is another area often assumed to be a problem

area. Here risk has been significantly reduced by proposing a

language which is essentially ANSI Standard FORTRAN with a

structure surrounding the FORTRAN pieces. This structure allows

the FORTRAN pieces to map directly onto the many individual

processors of the FMP. The result is that most of the compilation

is the same serial FORTRAN to processor-level code process that

industry and Burroughs has considerable experience with. The

coordination between the pieces of standard FORTRAN is simply

described by the added structure and maps easily onto the section

of the FMP specifically designed for such coordination (i. e., the

coordinator).

As a result of the approaches proposed and evaluated during the

study, the success of implementation of the necessary software

seems assured.

Hardware presents no threat to the success of the project. The

technology projections made during the Preliminary Study [2, 3]

are proving to be conservative. Logic design would be straight-

forward and presents little in the way of new challenges. The

organization considered is very modular which would allow

implementation of the system with only a few types of modules.

The one area in the hardware which represents a feature not found

so far in any commercial computer is the Connection Network. This

network provides the necessary data paths between the many

processors and the large, common memory in the FMP. This network

has been thoroughly simulated and otherwise analyzed during the

course of this study.

1.4 CONCLUSION

The work summarized above has demonstrated the feasibility of the

Numerical Aerodynamic Simulation Facility. Although some risks

have been identified, the level of risk is low for the architec-

ture and software considered during the evaluation. This system

is believed to be the best approach to meeting the total system

goals for the NASF. In particular, with thes_ concepts no new

advances, beyond the technology available today, are needed in

order to successfully implement the facility.

1-9



CHAPTER 2

NASF SYSTEM ARCHITECTURE

As indicated in Chapter i, the feasibility study of the NASF

required broad consideration of the total needs of the proposed
facility and of the expected user community. Because of time and

budget constraints, detailed study was based on cc_aercially avail-

able equipment wherever possible. The system architecture used

for evaluation is substantially the same as that described during
the PreLiminary Study [i, 2,]. However, some changes were indi-

cated, based on this feasibility study. The modeling which was

done in support of this study was operationally based. That is,

the system-level models are designed so that they may be easily

verified by direct observation of an actual system. This approach
was chosen to make future verification of the models straight-
forward.

2.1 OPERATIONAL ENVIRONMENT

Before considering the system architecture in detail, it is impor-

tant to first consider how the facility is expected to support the

user community. The planned operational environment of the NASF

has been reviewed in two documents provided by NASA [3, 4]. The

central computational facility (which includes the Flow Model
Processor and a Support Processing System) will be accessed by a

number of users at sites remote from the facility. Some of the

"remote" sites would be physically nearby (such as the NASA Ames
facility) while others would be at distant locations.

For the purposes of the study, some assumptions were made concern-
ing the users. The operational environment described by NASA

shows that many of the users will be directly concerned with pro-

duction use of the facility for design work. These production

users have been assumed, for purposes of the study, to be working

in design teams at "design centers". These design centers have

been assumed to have sophisticated graphics, processing, file
storage, and communications capabilities. These design centers

would reduce the processing load of the facility.

The NASA documents also pointed out that other users will be

involved with code development, method development, and research

in fluid physics and other areas. Some of these users have been
assumed to be associated with the design centers, at least as far
as use of facilities are concerned. Other users would have direct

access to the computational facility from their terminals.

2-i



Figure 2.1 depicts the assumedoperational environment with the
central computational facility of the NASFat the top and with
users having access to that facility eithe_ via terminals or via
design centers. Figure 2.2 depicts the organization of a design

center. All sophisticated graphics equipment was assumed to be

associated with design centers. The processors which are part of

each design center were assumed to provide support to the users

both in terms of graphics I/O operations and in terms of text and
file handling. If the "nearby" design centers are assumed to
support fourteen active users and if the "remote" centers are

assumed to support four active users, the configuration shown in
Figure 2.1 would have at least i00 active users.

The design centers have not been studied further and are certainly
not a required part of the overall system. The main reason for
their consideration was to develop a realistic estimate of the

amount of load on the Support Processing System for text input and
editing tasks. Based on the environment just described, the

fraction of users who require the Support Processor for data entry
and editing was assumed to be 0.2. The other 80% of the users
either use the facilities of a design center, or have terminals

with built-in edit mode capabilities.

2.2 SYSTEM DESCRIPTION

The NASF consists of three elements; the Flow Model Processor

(FMP), the Support Processing System (SPS) and the physical en-
vironment including the building, power, cooling, etc.

2.2.1 FMP

The Flow _del Processor (FMP) is a dedicated, single-user-at-at-

time computing engine which has no I/O capabilities except through

a staging memory. The FMP is based on a large number of indepen-

dent processors, each executing FORTRAN code independently of the
other. The extensions to FORTRAN described in Chapter 4 include
constructs which allow description of significant amounts of inde-

pendent, concurrent operations. In addition, provision was made

(in both the hardware and software) to allow a single computa-
tion to utilize a large number of processors. The FMP also in-

cludes a very wide bandwidth memory that can be shared by all the

processors. The memory sizes assumed for the study were based on

the aero flow programs used for evaluation during the study. More
details are included in Chapter 5.

2.2.2 Support Processing

The Support Processing System serves as the central control, inter-

faces with users and peripherals, maintains the data files and pro-

vides that computational support necessary to keep the FMP effect-
ively utilized. The Support Processing System consists of three

portions; a host processor called the Support Processor, a File

System, and a Peripheral Support System. _st of the discussion

throughout the rest of this report refers only to the Support

Processor (which is the host) and to the File System.

2-2
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2.2.2.1 Support Processor

The host processor, which is identified as the Support Processor

during this report, was assumed to be a dual-processor B7800 for

the purposes of the study. This processor was chosen for two

major reasons. First, the B7800 system is a new, standard product

which has evolved from the Burroughs 700 and 800 series machines

over the past 16 years. A wide range of data communications and

peripheral support is available on this system. Second, because

the B7800 is an evolutionary system, it supports the Master

Control Program (operating system), compilers, utilities, and

application programs developed by Burroughs for the B6000 and

B7000 series processors. The feasibility of this system for con-

trol of the FMP seems clear since the same functions are already

being implemented for the Burroughs Scientific Processor (BSP)

which also attaches to the B7800 system.

The B7800 employs independent functional processing tu distribute

both intelligence and control among various processing elements.

The B7800 includes five independent functional processors. They

include the central processor, the input�output processor, a

memory control processor, a communications processor, and a maint-

enance and diagnostic processor. The configuration assumed for

the study includes redundancy in essentially all elements of the

system, resulting in very high availability.

Since the Support Processor would be the master control for the

facility, most user communications would be supported with the

Data Communications Processor port'on of the B7800. Tlr: configur-

ation assumed for the study included 96 input lines, oI which four

were synchrunous broadband lines (19.2 Kbps - 1,344 Kbps). The

remainde_ were assumed to be a combination of synchronous and

asynchronous lines of various rates (1.2 Kbps to 9.6 Kbls).

In addition to the standard line control disciplines, the B7800

and its Data Communications Processor would provide the capability

for network access and control. This capability would provide the

needed flexibility for potential users to be connected to the

facility "on their terms".

2.2.2.2 Peripheral Support System

In addition to the input/output processors on the B7800 Support

Processor, the study demonstrated that some peripherals would

require a significant amount of computational support. The most

significant of these devices is the Computer Output to Microfilm

(COM) device. The NASA supplied scenario of usage [4] postulated

a very heavy COM load (in excess of i0,000 frames per day) where

the output was assumed to be graphic images. The majority of this

load was for "movies" of complex evaluation results.
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The system utilization analysis (summarized in Section 2.3 below)

clearly demonstrated the impact of the COM formatting, even when

the formatting was only to produce listings of the points of inter-

est rather than graphics control procedures. This load could be

supported with additional central processors within the Support

Processor. Alternatively, the load could be supported by doing

the necessary formatting in the FMP prior to FMP task completion.

A third alternative was to consider a separate system, specifical-

ly oriented to supporting this formatting and the COM device.

No study has been completed with regard to what impact the COM

formatting would have on FMP loading. By studying the Support

Processor loading with and without the COM _ormatting task, it was

clear that one feasible way to support a load of this sort was

with a specialized system specifically planned for that support.

Although further study should be performed, a Peripheral Support

System configured with two high-end minicomputers with special-

purpose software should be capable of handling the required tasks.

2.2.2.3 File System

A separately managed and accessed file system is required as part

of the Support Processing System. The volume of data and programs

which will be moved in and out of the Flow Model Processor togeth-

er with the amount of file management required for the total

system indicate strongly that a separate system be provided for

this purpose (rather than using the Support Processor itself for

example). Secondly, when file management functions are in a

processor different from any processors which may be executing

user progralas, the confidence in security capabilities can

increase significantly. The File System includes the disk packs,

the archlval store, and the file manager. Conceptually, the File

System also includes the Data Base Memory, the staging area for

programs and data within the FMP.

The File System is another part of the facility where a detailed

study has not been completed. Enough is known about the require-

ments of the File System to be confident that such a system can be

configured from essentially standard components. These require-

ments will be summarized below.

The File System should be organized such that many simultaneous

high-speed transfers are possible. The NASF architecture requires

four major connections to the File System; the FMP, the Support

Processor, the Peripheral Support System. and the l]sers. In

addition, the File System would be capable of responding to re-

quests for data movement within the File System and would provide

automatic management of the space.

The FMP requires up to four simultaneous (12.5 Mbits/sec each)

paths to and from the File System, although the use of these paths

is not continuous. The peak requirement of each of the two Input-

Output Processors of the B7800 Support Processor is alst_ 50 Mbits/

sec each, which like the FMP connection, is primarily disk I/O.
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The Peripheral Support System requirements are insignificant by

comparison. The interface from Users to the File Systum would be

for the purpose of accessing graphics data files without having to

funnel such requests through the B7800 Support Processor. Again,

since the User loading would be on the order of the Peripheral

Support System loading, the User loading would be supported well

if the FMP and Support Processor are supported. The technology

for connections of this sort has already beun reported in the

literature [15] and is in production. Equipment to support 50

Mbits/sec per channel is available now. The major thrust of

development, at least at Burroughs, is to significantly reduce tile

cost of this technology or an equivalent.

Tile file manager wouh] be expected to handle approximately i0,000

£ile creations and deletions per day. The File System would

respond to approximately 25,000 requests for [ile accesses per

day. All interfaces to the file system would be in terms of file

"names" rather than physical media position. The File System

would perform dictionary management and storage allocation

functions. Also, the File System would be responsible for data

ownership and access controls.

The analysis assumed a file configuration with both high-speed

storage and lower-speed mass storage on-line. In particular more

than 1011 bits of high-speed disk storage (25 msec average access,

3.6 MByte/sec transfer rate) was planned. More than 2 x 1012 bits

of mass storage (3 seconds average access, 1 MByte/s,:.c transfer

rate) was also planned. Although these appear more than adequate,

the utilization studies described below have not yet considered

what file capacities would be required given tne scenarios sup-

plied by NASA late in the period of the study.

2.3 SYSTEM UTILIZATION STUDIES

The feasibility of the ability of the I_ASF system organization to

be able to support the expected workloads was evaluated. The

evaluation is summarized below and discussed in more detail in

Appendix F. In summary, the system organization described above

would be capable of supporting the workload hypothesized by NASA

[4].

The NASF Utilization document [4] provided by NASA described the

use of the facility in terms of class of usage, called Cases, and

in terms of the sequence of Tasks performed for eacl, job. The

Cases (such as method and code development or design _imulations)

and Tasks are summarized in Appendix F. Before confidence could

be gained that the system could support the projected load, the

committment o£ each system-level resource to each task was care-

fully charted. These event sequence charts identify the sequence

of events needed to implement each task. The charts also identify

those system resources (File System, Data Comm, Support Processor,

FMP, ...) which must interact to implement each event. Samples of

these charts are also included in Appendix F.
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The charts were then used as a model to dc:velop a program which

was used to analyze the impact of the hypothetical workload on the

various components of the system. Some of the data used in the

analysis program was based on a benchmark of a mix of FORTRAN

programs oll a B7700. A known factor of improvement was used to

project expected B7800 performance. In addition, a processor

which might be available about the time that the NASF project

would be implemented wa.,_ hypotllesized and used for eva]ug]tion

purpose:3.

Table 2.1 summarizes the results of the analysis of the Sul,pol:t

Processor loading with and without the COH formatting d[,_cuss___d

earlJ er.

TABLE 2.1

Support Processor CPU Hours Needed/Hour

(Averaged over Day)

Processor With COM Without COM

Similar to B7700

Similar to B7800

"Future Processor"

14.2 1.3

9.5 .9

2.8 .2

In Table 2,1 note that a support processor implemented with the

future processors expected to be available to the NASF project

could support the COM workload with a reasonable-sized system (3-4

central processors).

Table 2.2 summarizes the Data Transfer Requirements averaged over

the day and by shift. Note that these data transfer rates only

show the average rates, not the peak rates needed to prevent the

data path from being a bottleneck. The daily average is over a

full 24 hour day. The data rate (char/sec) assumes 8-bit

characters plus error control.
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TABLE 2.2

NASF Data Transfer Requirements

Support Processor - File System

Support Processor - FMP

Suppor% Processor - Users

File Sjstem - Users

File System - FMP

Dai ly
Average

29,240

.050

4,453

24,260

163,400

RATE (Char/Sec)

Hourly Av._rage
12M- 3am 5am- 5pm

16,678

.08

8,125

45,900

210,032

83,388

.02

228

3,002

294,770

5pm- 12M

35,937

.02

187

1,554

73,770
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Table 2.3 summarizesthe File Systemcontrol activity by day. The
terms ACTIVE,LONGTERM,and ARCHIVEin the table indicate the dif-
ferent types of files expected to be found in the File System.
Active files are those only recently created or actively used and
would be on the devices with the fastest access times. Longterm

files are those which have been in the active system for up to a

week with little or no use before being copied onto a slower

media. Some files are saved on on-line mass storage, called the

Archive in the table. These files would have an acce:_s time on
the order of seconds but would still be on-line.

TABLE 2.3

NASF File System Control Activity per Day

FILE ACTIVITY

Files Created

Files Deleted

Files Accessed

Files Replaced

ACTIVE

2483

2483

19810

1302

FILE TYPE

LONGTERM

1127

1127

827.7

ARCHIVE

627.3

627.3

118.3



i
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The analysis performed to date is sufficient to give one confi-

dence that the system studied would be capable of supporting the
hypothesized workload. Before design can begin, more detailed

studies should be performed to determine more accurate estimates

of grid generation task requirements, the impact of interactive

graphics support tasks and the sensitivity of system support to

all parts of the hypothesized workload.
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CHAPTER 3

APPLICATION ANALYSIS

3.1 INTKODUCTION

The requirement for performance for the FMP was initially stated

as the execution of the "typical" 3D Navier-Stokes aero flow code
on 200 x 50 x 100 grids in 10 minutes, with the provision that the

FMP should be a flexibly programmable machine that can run a

number of similar applications with similar throughput. These

throughput goals can be restated, with respect to the sample aero

flow codes supplied by NASA, in terms of a more hardware-related
secondary standard of performance, that the FMP should be capable

of achieving a sustained rate of 1.0 Gflops/sec on aero flow codes

that take advantage of its architecture. These goals were met, as
described in more detail below.

3.2 PRODUCTION APPLICATIONS

The statement of work specifically asked for a design that is
adapted to the requirements of computational aerodynamic

programming, with a secondar_ look at the requirements of weather

computations. NASA supplied two examples of aerodynamic flow

codes, identified as the "3D explicit" code and the "3D implicit"
code. In addition, two programs exemplifying the weather applica-

tions were supplied, one being a Goddard Institution of Space
Studies (GISS) version of the Mintz-Arakawa global circulation

model, the other one being a spectral weather code from MIT

(Spectral).

3.2.1 Functional Requirements

The application areas of interest, as exemplified by the codes

supplied, represent a substantially different spectrum of appli-

cations that one would arrive at by questioning all of the users

of very high speed numerical computation.

A general purpose very high speed numerical computing machine must

support a wide variety of precision requirements. For example,
users with sparse and ill-conditioned matrices, such as one finds

in some structures applications, require very high precision, for

some users well over 30 decimal digits. Aero flow and weather
codes apparently will run happily with not more than 10 or 12

decimal places of precision, with much of the computation and most

of the data needing only six or seven places of precision.
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It has been appreciated for two decades that the speed of light

puts an upper limit to the throughput of an uniprocessor, and that

very high-speed machines must use some sort of parallelism or

concurrency in order to achieve throughput. Traditionally, paral-

lelism has taken two forms, first, vector machines in which only

data with extreme regularity could be processed in parallel, and

second, multiprocessors in which many totally independent programs

run in parallel. Because aero flow and weather codes can be

vectorized, a vector machine could be made to work. However, the

vectorization imposes inefficiencies (for example, subroutine

CHARAC in the 3D explicit, or COMP3 out of the GISS weather). As

a result a machine that is efficient only for vectors is often not

efficient when considering all of the programs that one expects

that computational fluid dynamicists would want to write.

Hence, part of the problem is to demonstrate the feasibility of a

flow model processor that is as efficient on vectors as the tradi-

tional vector machine, and is also efficient when the concurrent

processing is on data that does not form vectors. Furthermore,

the language should allow for the description of parallel (or

vector) operations and for concurrent scalar processes which are

independent of each other, or for any mixture of the two.

Demonstration of optimum feasibility of the FMP for its applica-

tion set therefore includes:

- Provision of concurrency (or parallelism) for high throughput

without the requirement for vectorization of the algorithm.

Although the implicit algorithm is easily vectorized, and the 3D

explicit is also easily vectorized, the earlier 2D explicit was

not all easily vectorizable, and a large portion of weather (sub-

routine COMP3) can be vectorized only with difficulty and a large

penalty in throughput.

- A language (FMP FORTRAN) in which one can write either non-

vectorized concurrent operations, or vector operations.

- Word size. The computational fluid dynamics and weather

community requires no more than i0 or 12 decimal digits of preci-

sion, corresponding to 33 or 36 bits in the fraction part of the

floating point word, with some computation and most data requiring

no more than six or siren digits (24 bit fraction part) of preci-

sion. This is not true of other "typical" users of very high-

speed numeric processing. Requirements for precision run from 8

bits, for picture processing, to over 30 decimal digits, for users

with large, sparse, ill-conditioned matrices, typically structures

and applications. A large number of scientific processor users

desire 14 to 16 decimal digits of precision.

- A language based on FORTRAN to accomodate the applications

programmers, who, in the computational fluid dynamics and weather

communities, have mostly been used to working in one dialect or

another of FORTRAN.
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3.2.2 Pro_ected Performance, Summar_

For the aero flow codes, the FMP here described would run the 3D

implicit in 6 minutes and 16 seconds (i00 times steps) at a

throughput rate of 1.01 Gflops/sec* during that time. The 3D

explicit runs in 8 minutes and 52 seconds (again, for a test case

with i00 time steps) at a throughput rate of 0.89 Gflops/sec
during that time. In both cases, the mesh had a million grid

points (i00 x 50 x 200 in the case of the implicit, i00 x i00 x

i00 for the explicit). Feasibility is therefore demonstrated.

Other metrics can be used to describe the "raw" throughput, of
which the above is the net:

2.22 Gflops/sec would be the maximum throughput rate given that

operations are alternately add and multiply.

1.74 Gflops/sec would be the maximum throughput rate for register-
to-register operations using the instruction mix derived from
analysis of the aero flow codes.

1.33 Gflops/sec would be the throughput rate seen in about half of
the sequences of code submitted to the simulator.

Of the above, the figure of 1.33 Gflops/sec represents a through-

put rate achieved by a number of real sequences of code, taken

from both aero flow codes and from weather. It represents an
achievable throughput for "friendly" applications.

All of the above refers just to the FMP. The throughput of the

NASF is just as much dependent on proper function of the Support

Processor System (SPS) as it is on the FMP. The SPS, however,
presents well-known problems, not unique problems for the partic-
ular set of applications.

3.3 PERFORMANCE PROJECTION BASED ON BENCHMARK PROGRAMS

3.3.1 Summary

The four programs used as benchmarks in evaluating the design
were:

- NASA 3D implicit aero flow code supplied by Ames

- NASA 3D explicit aero flow code supplied by Ames
- GISS weather code, in several different versions

- Spectral weather code from MIT

Evaluations of the first three were comprehensive, resulting in
the projections of 1.01 Gflops/sec and 6 minues, 16 seconds, for

the implicit, 0.89 Gflops/sec and 8 minutes, 52 seconds for the

*Gflops/sec, Billion floating point operations per second.
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explicit at the size of the benchmark, and 0.53 Gflops/sec and 4

minutes, 25 seconds for the GISS weather code. Appendix A
discusses these evaluations in detail. These evaluations and the

conditions leading to these conclusions are summarizod in this
chapter.

The implicit code achieves the 1.0 Gflops/sec being used as a

guide for evaluating adequate throughput rate. The explicit code

nearly does. Since the intent of the explicit is to be computa-

tionally more efficient than the implicit, the performance goals
are deemed demonstrated.

On GISS weather, the non-vectorizable portions of the code exe-
cuted at more than one Gflops/sec (subroutine COMP3), while the

throughput rate observed in vectorizable portions (COMPI and

COMP2) was reduced by EM accessing and memory-to-memory moves that

produced no floating point operations.

Examination of the spectral weather shows that the fluid dynamics

portion should run with higher flop rate than the fluid dynamics
portion of the GISS weather (COMPI and COMP2), and that the chemis-

try and physics portions were essentially identical to COMP3.

Hence, the spectral weather is expected to run at a higher flop
rate than the GISS weather.

3.3.2 Me thod

The method used for performance evaluation was generally the same

for all of the first three benchmark programs. Because of time

and budget limitations, only a cursory look was taken at the
Spectral weather code.

Throughput was analyzed on the basis of FMP computations. I/O

operations were ignored. Transfers between DBM and file system

are independent of, and go in parallel with, the FMP computation.
It is assumed that the file manager stages the next job, and

unloads the last job, in times which are completely overlapped

with current computation. DBM-EM transfers are also ignored,

since they go on concurrently with current processing as long as

EM space is available and take negligible time. The 15 million
words of a restart point of a typical aero flow code are loaded in

0.375 seconds, which can be compared with the 600 seconds duration

of a typical run. Therefore, both system I/O and user I/O were

ignored.

Each program was analyzed to find the calling tree of the sub-

routines, and subroutines were divided into sequences of code that

were internally similar. Analysis was performed on each indivi-

dual sequence and the results combined, taking into account proces-
sor utilization percentages and number of exceptions, into total

figures for each of the benchmark programs. Thus the analysis

included every line of code in the first three programs.
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Analysis consisted of hand compilation and simulation for a select-

ed number of code sequences, and estimates based on interpolation

between known simulations for the rest of the sequences. In the

implicit aero flow code, over 60% of the computations of the
program are within the inner loop which was simulated. For those

sequences which were not simulated, a formula was developed which

interpolated between the simulated sequences. For a more detailed

description of this method, see Appendix A. Various cases in
which exception should be taken to the formula were also taken
into account. It was found that almost allof the simulation

results could be empirically fit by a formula of the form

T =(k I F + k2M + k3D)/P (3.1)

where T is the time required to execute a particular code segment,

F is the number of floating point operations in that segment, M is
the number of EM accesses, and D is the number of divisions over

and above the 2% divides assumed by the "standard" instruction

mix, and p is the number of processors processing. The constants

k I and k2 are determined empirically from the simulation results,

and k 3 was set equal to the time of a divide instruction. Through-
put for the individual code segment is given by F/T.

The hand compilation made certain assumptions about the compiler.
Assignment of instances of the DOALL to processor was not optim-

ized, but done by the simplest algorithm conceivable (see Chapter

4 for software discussions). Optimization steps such as the

substitution of an add or subtract from exponent to replace a

multiplication or division by a power of 2 were assumed.

3.3.3 Throughput of Aero Flow Codes

The implicit aero flow code, for which simulation covered over 60%

of the computations, was estimated to have a throughput rate of
1.01 Gflops/sec at the 100x50x200 size and ran i00 time steps in 6

min, 16 sec. The implicit code showed an estimated throughput

rate of 0.89 Gflops/sec at the i00 x I00 x i00 mesh size and ran

I00 time steps in 8 min. 52 sec. Details are in Appendix A.

The language being considered, FMP FORTRAN (described in more

detail in Chapter 4), was found to fit the aero flow codes very

conveniently. A simple, one-to-one translation from FORTRAN codes

provided into FMP FORTRAN goes as follows. All arrays subscripted
with the grid variables are made GLOBAL. DO loops (single or

nested) on the grid variables are automatically turned into DOALLs

as long as the data dependence allows it. Temporary variables are

allowed to be LOCAL by default. The implicit code, as supplied by
NASA, is of such regularity that practically all of it can be

transformed into FMP FORTRAN using such simple rules. Because of
this, and in order to save time, most of the FMP FORTRAN versions

of the aero codes were not even written down, since they are

obvious from the FORTRAN versions provided by inspection.
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During the hand compilation process it was found that translation
from FMPFORTRAN to FMP machine code was simple and straight-

forward. This gives confidence that the compiler will be rela-
tively simple to write.

Procesor utilization ranged from 93% (in the explicit) to an

average of 97.4% (in the implicit). Some routines gave 99.9% pro-

cessor utilization. All subroutines and other code sequences were

included in the total time and total number of floating point
operations. In neither aero flow code did any of those sequences

with low processor utilization have any influence on the final
throughput estimate.

3.3.4 Weather and Climate Codes

Two benchmark programs were supplied by NASA Ames for use in
evaluating the performance of the FMP for weather and climate

codes. The first, a Goddard Institute of Space Studies version of
the Mintz-Arakawa global circulation model, came in several differ-

ent versions written for several different machines. These

various versions are seen to have variations in portions of the

algorithm. The version analyzed was one written for the 360/195.

This is the same version that had previously been used as a test
case for analyzing BSP throughput.

The second is a "spectral" weather code from MIT, in which an FFT

is used to regularize the hydrodynamical computations.

The GISS code was analyzed at an intermediate grid size (2 o lati-
tude steps, 2.5 ° longitude increments along the equator with 20

minute time steps). The program consists of an easily vectoriz-
able fluid dynamics section (subroutines COMPI and COMP2 and the

subroutines they in turn call), and COMP3 and its callees, the

physics and chemistry section. The average throughput rate for
the entire program was determined to be 0.532 Gflops/sec with a

14-day simulation taking 4 minutes, 25 seconds of FMP time.

The GISS climate code demonstrated the advantages of the FMP

architecture. The vectorizable portions tended to run slow
because of many EM accesses, but COMP3 and its subroutines ran as

independent scalar processes in parallel in all the processors,

achieving over 1.2 Gflops/sec for the portion simulated. COMP3
and its subroutines have been shown to be hard to vectorize for

existing vector machines, whereas it is not necessary to vectorize
them for the FMP.

In this benchmark, substantial use is made of parts of the lang-

uage that see little or no use in the two aero flow codes,
including:
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- Domaindefinitions using domainexpressions that
include previously defined domains

- INALLarrays

- Initialization of values in declaration by arithmetic
expressions

- NEXTDO

- Branching within DOALLS

This is a worst-case analysis, in that any data dependentbranches
were assumedto demandthe most computations. This approach was
used in order to estimate the worst-case maximumrunning time of
the GISSclimate code. Other conditions which simplify the radi-
ation calculations (such as the existence of cloud cover) will
result in fewer floating point operations, and shorter times.
Whether the Gflops/sec rate would go up or downunder these condi-
tions dependson whether flops or elapsed time is reduced propor-
tionately more. This case wasnot analyzed.

The spectral weather code is expected to run with substantially
higher throughput than the GISS climate code does. Its fluid
dynamics portions are done by spectral analysis, with each

processor processing an FFT independently of all other processors.

Thus, the fluid dynamics computations are much more locally
contained, since all the intermediate results in the FFT can be

contained within processor memory (declared either INALL or LOCAL)

and should run faster. The chemistry and physics portions of the

spectral weather code are substantially identical to the chemistry

and physics portions of the GISS climate code, and the analysis of
one can represent the analysis of the other.

3.3.5 Applications Beyond the Benchmarks

The analysis summarized earlier in this chapter and in Appendix A

demonstrates the applicability of the FMP described in Chapter 5

to aero flow and weather codes. This analysis is therefore a
constructive demonstration of the feasibility of the NASF. The

FMP as described has broader applicability than to applications
similar to the four benchmarks, as the remarks in this section

will indicate. The following are considered:

- Single FFT (In the spectral weather code the 512 processors
do 512 FFT's concurrently)

- Sort

- Problems too large to fit in Extended Memory (in "core")
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In Section A.6 of Appendix A, the FFT is discussed. That section

shows that the FMP runs various sizes of FFT at throughputs
varying from 0.5 through 0.7 Gflops/sec. The reduction from 1.3

Gflops/sec is due to data rearrangement.

Section A.6 also discusses a method for achieving concurrency in

sorting keys or data elements that are contained in processo_
memory. The particular method shown runs at 100% processor

utilization when sorting an array of elements that start out being
sorted in inverse order, such a case being a kind of worst-case

test for some sorting algorithms.

3.3.5.1 Large Problems

The "standard" scenario for the use of the FMP is that all files

necessary for the use of an FMP task are in place within DBM at

the time the task is started. During the course of a run, the

task is essentially self-contained within the "main memory",

namely EM, CM and PM. This does not preclude reading from DBM to
EM, or writing to DBM from EM at appropriate times. A set of

files are located in DBM at the start of the run. Files may be

created within DBM during the course of the run, snapshot dumps

for instance, and when such files are closed by the FMP program,
the file system has the option of moving them out of DBM before

the run is finished. The concept of having the high-speed computa-

tions contained within a bounded portion of the hardware, here the

FMP, with no interaction with external devices such as the support

processor, has been given the name "computational envelope".
However, the computational envelope is not completely sealed even
during the "standard" scenario.

Another scenario is the running of tasks that will not fit in main

memory. The following questions are considered. First, what

facilities should be available with the initially delivered com-

piler; second, what facilities are envisioned for possible later
implementation; and third, what problem properties allow efficient

operation for problems that do not fit in memory.

The system evaluated during this study does not have the system

software required for automatic virtual memory management for

taking care of overflow from EM. Hence, the user programmer will
have to insert READ and WRITE statements for access to DBM files.

As with any other direct I/O scheme, it behooves the programmer to

initiate I/O ahead of time, and test for completion at the point
of using it. Only one direct I/O operation can be going on at one

time. If a second direct I/O is called for before the first has

finished, the program would wait for the first I/O operation to

finish before initiating the second. User processing would be
suspended until that second direct I/O is started.
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The FMP hardware, which is described in more detail in Chapter 5,

is intended to be able to support a virtual memory mechanism
whereby certain Extended Memory (EM) files can be held in Data

Base Memory (DBM) when EM does not have enough space. EM space

would be dynamicall_ allocated, and addressed with base registers,

hence one possible [_p_ementation of such virtual memory is to

have the base addresses of non-present data point outside of

actual memory spa_e. The address-out-of-bounds interrupt would
trigger transfers between DBM and EM, plus some processing to fix

up base addresses.

The system considered during this study does not have the system
software to implement such a virtual memory scheme. This lack of

automatic virtual memory management did not impact the throughput
studies of the aero codes and GISS codes since these benchmarks

will be able to reside within the planned EM space.

Hardware mechanisms that allow virtual memory for Processor Memory

(PM) space using EM memory space to back up the PM space should

also be planned. Methods for supplying this feature are still
under discussion. One suggestion is that EM module No. P could be

assigned to processor No. P, giving each processor its own private

EM module for back-up for virtual memory purposes.

Some of the characteristics of an aero flow code that would exe-

cute satisfactorily, even though it would not fit in the Extended

Memory (EM) can be determined by analysis independent of the

method used to extend the storage capacity for problems into the

Data Base Memory (DBM).

The following discussion is based on the 3D implicit aero flow

code, whose major computational effort is in subroutine STEP and

its subroutine BTRI. A listing of BTRI in FMP FORTRAN is included
in Appendix H.

The bandwidth between EM and DBM (detailed in Chapter 5) is 50

million words per second. Since data overlay requires moving idle
data out to make room for tLe new data, half of this, or up to 25

million words per second, is the rate that files can be brought in

to be worked on. If the throughput rate (1.0 Gflops/sec) is to be

maintained, there must be 40 or more floating point operations for

every word brought into the EM from DBM. This goal can be met and
then some. As an example, consider the following demonstration of

one way of programming a 220 x 220 x 220 3D implicit aero flow

program.

The data is blocked into 64 blocks, each 55 x 55 x 55. The organ-

ization of these blocks is shown in Fig 3.1. At any given time,

four blocks forming a "pencil" in one direction will be in EM.

Computation sweeps from one end of the pencil to the other and

back again, so that having anything less Khan a pencil in EM will

increase the amount of overlays between EM and DBM dramatically.
Analysis of subroutines STEP and BTRI shows that there are about

84 floating point operations on each datum, larger than the 40

required for the desired throughput.
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Memory requirements are dominated by the pencils. It is conven-

tional in such overlaying situations to have one pencil in "core"

being computed on, one pencil's worth of space alloc_ted to the

next pencil being brought in, and one pencil's worth of space
allocated to the newly created data that is being written out.

Since only one transfer is going on at a given time, in the pre-

sent instance it may be possible to use the space vacated by newly

created data to contain the next pencil, so that only two pencil's
worth of space are needed. Assuming 15 variables per point, and

665,500 mesh points per pencil, three pencils (the worst case)

would occupy 29,947,500 words in EM; two pencils (the more likely
case) would occupy 19,965,000 words in EM.

Although the EM-DBM data transfers are completely hidden behind
computation, and do not slow down the throughput, there will be a

throughput reduction from the 1.01 Gflops/sec analyzed in Appendix
A from another cause. Not all the arrays declared LOCAL in the 3D

implicit of the analysis, will fit in processor memory. Some of

these arrays will have to be held in EM, where the access time is
longer. Alternatively, recomputation can be used to avoid the

saving of precomputed results.

After sweeping 16 such pencils in one direction, direction is
switched and 16 pencils are swept in the second direction, and
then in the third.

Virtual memory machines have been on the market for 19 years at
least; the Burroughs B5000 is an early example. All of the commer-

cially avai]able virtual memory mechanisms show varying degrees of

throughput reduction when the data base for the problem is larger

than the main memory of the machine. When the programmer controls

his own direct I/O, there is the opportunity for favorable cases,
such as the implicit aero flow above, to achieve full machine

throughput on problems too large to fit in main memory.

3.3.6 Application Domain

The primary area of application of the FMP, according to the state-

ment of work, will be the aero flow codes. A secondary area of

application will be the weather and climate codes. Analysis of

the benchmark programs shows that for reasonable grid sizes, the
desired throughput is achieved. The range of problem sizes for

which the throughput applies is analyzed here, as well as what is

the largest problem that will fit in the DBM using the approach
described in the previous Section 3.3.5.

In the aero flow code, the smallest "good" grid size is that which

permits two dimensional DOALLs to run with reasonable efficiency.
Hence, the smallest grid has a single dimension of not much
smaller than_. A grid of 22 x 22 x 22 is the smallest that

runs with 94% processor utilization or better. The largest acre
flow code is the largest one whose data base will fit in EM.

Assuming fifteen variables per grid point, and 225 words in the EM
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address space, that is a grid of about 2.2 x 106 grid points.

Other EM space requirements reduce the figure. The largest pro-
gram that will flt in EM and DBM using direct I/O has a complete

data base allocated to DBM. At the currently specified size of

DBM, namely 227 words, this is an upper limit of about 9 x 106

grid points. If a larger upper limit were required, the size of

DBM could easily be increased.

In the weather and climate codes, the grid has a much smaller

dimension in height than it does in latitude or longitude. Not
all weather code grids are in terms of longitude and latitude;

other two-dimensional grids can be mapped onto the surface of the
earth as well. In the GISS climate code, as translated for the

FMP, almost all of the DOALLs are on a single layer. Thus, as

long as that layer is nearly 512 elements, the bulk of the computa-
tions will be done with good processor utilization. The smallest

"good" weather problem would be one with 15 ° longitude spacing

along the equator, a grid of 20 x 24 in each layer.

Subroutine AVRX of the GISS code represents a non-negligible

portion of the computation. Appendix A describes five different

ways that AVRX may be mapped onto the FMP. Any one of the five

ways will work, but all have some drawback. The throughput of
AVRX will be poorer at the smaller grid sizes, and the preferred

implementation may vary as a function of grid size. Hence, the

throughput estimates of Appendix A (0.53 Gflops/sec), will have to
be revised somewhat for different grid sizes to take into account

the effects of AVRX*. At the grid size of 89 x 144 analyzed in

Appendix A. AVRX was 2.2% of the running time, executing at 0.065

Gflops/sec.

The largest weather code that will fit in memory, assuming 16
variables per grid point, would be a grid size of about 432 x 268

x 15 levels, or roughly three times the resolution of the case

explored. Alternatively, a grid size of 512 x 320 x 12 would also
fit. As with the aero flow codes, a grid with four times as many

points will fit into DBM, say 864 x 536 x 15 or 1024 x 640 x 12.

Running time on these latter codes would be quite long. Doubling

the resolution roughly raises the running time by a factor of 8,

assuming the same number of levels, since the spatial resolution

and the time resolution are roughly proportionate. Hence, with a

grid size of 432 x 268 x 9, which is triple the resolution of the

analyzed case, 27 times the running time of the 89 x 144 x 7 grid
size analyzed is expected. At this triple resolution, a fourteen

day run, with a 7 minute time step, would take roughly two hours,

based on multiplying 4 minutes, 25 seconds by twenty seven.

_A rough estimate of 0.36 Gflops/sec for the 20 x 24 size is

arrived at by the following approximations. AVRX throughput

(0.065 Gflops per second) and running times are assumed the same

for the small grid as for the analyzed case. For the rest of the

code, throughput is assumed the same, but the running time was
reduced by a factor of 26, since DOALLs drop from 26 cycles to one

cycle. The result is one twenty-sixth as much useful computation
done in 6.08% of the time.
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CHAPTER 4

SOFTWARI_

4.1 INTRODUCTION

The primary uses of the NASF are expected to be design and model-

ing applications. These applications can be approached either by

experimentation (such as with wind tunnels) or by simulation.

Figure 4.1 shows the relationship of these two approaches. The

NASF is expected to support the abstraction of the "Real World"

with some mathematical system. Mathe,natical conclusions will be
established as a result of the simulation and these conclusions

will then be interpreted to determine the desired physical
conditions.

The abstraction process represents the development of algorithms

to model real-world situations. The NASF should providu tocls and

support to assist in this abstraction process. The system con-

sidered in this Feasibility Study would provide support for the
abstractio,_ L)_ocess both with simple extensions to the well-known

FORTRAN language and with an interactive system which can be used
to observe the results of the use of the model.

ABSTRACTION
MATHEMATICAL iSYSTEM
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Figure 4.1 Relationship of Simulation and Experi'nentation
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_e simulation process would also be supported with the language

extensions. The Support Processor and the File System would be

used with the FMP during the simulation process to provide the

same careful controls and monitoring needed during an experi-

mentation process. The results of simulations would be observed

through use of the various NASF user facilities (printers, gra-

phics terminals, COM, etc.) for interpretation by the users.

Where the results of experiments might be available on the

facility, comparisons between simulations and experiments would be

made.

These processes (abstraction, simulation, and interpretation)

require use of most of the components planned for the NASF. The

system-level components were already described in Chapter 2.

Chapter 5, which follows, discusses the Flow Model Processor (FMP)

in detail. This chapter concentrates on the system-level software

required to support these processes. The most direct software

support of users comes from some means of describing the mathema-

tical system which is the result of the abstraction process and of

controlling the simulation process. In the NASF, the language

used to define processes on the FMP provides the support required.

Other forms of software support are the Master Control Program

(the operating system which controls all parts of the NASF), the

File System Control Software, Intrinsics, and Test and Diagnostic

Support Software.

4.2 FMP FORTRAN

The language considered as a means for supporting the design and

modelling applications on the NASF is a dialect of FORTRan. This

dialect is based on ANSI Standard X3.9-1978 [I0] and includes a

few extensions which are appropriate both to implementation of the

models and their simulation.

The description of the FMP FORTRAN presented here is substantially

the same as that actually used during the application analysis

(see Chapter 3). The language constructs presented are particular-

ly oriented to describing a set (or collection of sets) of dis-

crete processes which may be used to define the desired mode]s.

This simple set of constructs seems sufficient to support the

applications planned for the NASF.

4.2.1 Language Design Considerations

The design of a language must be concerned not only with the

utility of its use for applications, but it must also consider

problems of complexity, of implementation on the hardware of

interest, and of debugging and verification capabilities.
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4.2.1.1 Complexity

As the capabilites of available hardware expands, the uses of the

hardware have expanded to the point where the software has become

extremely complex. The development of a new language to support

the NASF community therefore must consider the problems of com-

plexity. Since programs are mort often read than written, the

language source becomes important Jm two forms of communication,

one with other users and the other with the NASF. The most impor-

tant concern then is to try to achieve a match between the appar-

ent complexity in a program and our human ability to deal with

that complexity. The language constructs described in the follow-

ing sections have been chosen to highlight the essential major

ideas of a model while using "standard" FORTRAN to define the

details. Some of the complexity of the "standard" FORTRAN will be

removed by optional automatic formatting of the source listings.

For example, the section of SMOOTH shown in Figure 4.2 shows how

indentation can be used to clarify the scope of the various

control structures such as DO and IF.

Although the design of a language cannot provide the desired

simpl_city automatically, the constructs can be chosen to

influence programming style in the desired way. Therefore, the

const*ucts chosen in the language extension are few and general in

nature. The programs written using these constructs should be

easily understood, hopefully even more understandable than the

same algorithm expressed in serial constructs. This result is

expected because each part of a program can be kept conceptually

simple and because the relations between the parts of the program

are kept simple. The constructs chosen also make the

representation of discrete models more natural. These constructs

should allow simplification of the abstraction process without

losing the ability to make efficient use of machine organization.

In addition, subsequent modifications to the abstractions should

be simpler.

4.2.1.2 Abstraction and Modeling

Before considering the proposed language constructs, the abstrac-

tion and simulation processes of Figure 4.1 should be discussed in

more detail. The problems faced in the practical use of the NASF

will l,e how to abstract the real-world systems of interest and how

to control the simulation of such systems so that the results

would be a meaningful adjunct to experimental results.

Since a digital system cannot directly model a continuous process,

the abstractions must be to some discrete-._stem representation.

The first step in such an abstraction is to identify the structure

(and substructure) of the model. For example, the geometries or

grids of interest would be defined. Then the information of

interest throughout the model would be identified. Such informa-

tion is usually called "state" information since it describes the

current state (or value) at the point of the model with which it

is associated. For example, when studying air flow around an

object, wind velocity, wind direction, and pressure may be o£
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interest at each point of the model. At the same time, some state

information may apply to the entire model (such state information

is invarient over the model). For example, the Reynold's number

of the fluid flowing around an object might be assumed to be the

same everywhere. If such an assumption is made, one value can be

used to represent the entire model.

Real systems of interest are usually not static. They show some

"behavior" over time. Such behavior is observed through the state

information. Thus some means must be provided to describe the

process by which the state at a particular point in the model

changes over time. Conceptually, such a process exists at each

point in the model. Note that these processes are concurrent.

The language constructs chosen below provide means of describing

both the spatial relationships (geometry and state) and the

temporal relationships (processes) in a model. In general, stan-

dard FORTRAN constructs are used to define the process of state

change at each point in the model while a new construct (called

DOALL) is used to identify the natural points of concurrency.

Although the normal FOKTRAN variable and array mechanisms are

available to describe the state of the model, two additional con-

structs are defined which are intended to make the abstraction of

models more straight forward as far as geometry and state vari-

ables are concerned and which assist in efficient usage of the

storage of the FMP.

4.2.2 Language Constructs

The language called FMP FORTRAN is based on ANSI FORTRAN 77 (X3.9-

1978) [i0] with extensions and modifications to improve its

utility for use for the planned applications and to allow effi-

cient use of the projected hardware. FMP FORTRAN is expected to

implement all of the features of ANSI FORTRAN 77 except that

CHARACTER type, all usage of CHARACTER type, and Input/Output

Statements are as defined in the subset FORTRAN in the ANSI

document [i0].

The additional constructs described in the following sections have

been motivated by the abstraction and simulation functions already

described. The three major areas discussed are geometry, state of

the model, and process modeling. As with other parts of the

system approach discussed in this report, areas for continued

improvement certainly exist. However, the language constructs

reported here were sufficient as far as the specific application

programs considered are concerned.

4.2.2.1 Introductory Example

To introduce the basic concepts of the language extensions, a

simple example will L_ considered first. The sections which

follow will explore each of the major areas in more depth.
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Figure 4.3 shows the main computation section of IURBDA (from the

explicit aerodynamic flow code). Note that there are three nested

loops. Also note that the computation inside the loops is

independent of the nesting order. The variable CVI _s used each

time the inner loop is evaluated without change.

Now consider Figure 4.4 which is a corresponding FMP FORTRAN

version of the code in Figure 4.3. Note that the nested DO loops

are replaced with a statement called "DOALL" at the start of the

loop and with a statement called "ENDDO" at the end of the loops.

This version would execute exactly the same as the original

version if only one processor is available. However, the DOALL

construct gives the specific information that the computation of

the inner loop for each combination of I, J, and K values is inde-

pendent of all other I, J K combinations. In other words, if

enough processors were available, all IL*JL*KL instances of the

code in the inner loop could be computed concurrently. In this

case, there would be IL*JL*KL copies of the inner loop code (one

copy per processor). Execution of the DOALL statement would acti-

vate all IL*JL*KL instances simultaneously, (one per processor),

each with its own set of I, J, K values. After all instances had

completed, execution would continue after the ENDDO statement,

just as control passes the CONTINUE statement in the original code

when all loops are complete.

From an applications standpoint, the DOALL statement identified a

grid over I, J, and K. The arrays EI and RMUL have one element

(of "state" information) corresponding to each point of the grid.

The variable CVl is a "global" state variable. The code between

the DOALL and ENDDO statements describes the process of changing

state variables from the old set of values to a new set of values.

Note that the process is logically different along the J=l and K=I

planes. The evaluation of the code for a specific combination of

I,J,K values is called an instance.

The compiler is informed of the usage of variables in this case

with the last part of the DOALL and ENDDO statements. The vari-

ables and arrays listed after the word USING in the DOALL state-

ment and after the word GIVING in the ENDDO statement identify the

state variables (usually in Extended Memory).

Before considering the details of each of the constructs, consider

how each of the instances execute and use memory. In the case of

IL*JL*KL processors, all processors begin execution, each on its

instance. Each processor has a copy of the code and executes out

of its own local storage. CVI and the array EI(I,J,K) would be

referenced in the common Extended Memory. The variable TEMP is

completely local to an instance. Therefore, each processor would

have a storage location for TEMP as used in the instance executing

on that processor. The resulting array _IUL(I, J, K) would also

be it, Extended Memory. Since all IL*JL*KL instances need the

value of CVI, space would be allocated in each processor for CVI

and the value would be broadcast to all processors. This approach

costs a little storage and would save IL*JL*KL -i references to

the slower Extended Memory.
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DO i E=I_KL
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DO i Z=i_IL
TEHP=RBS(KI(I_J_K)}XCUI
XF(K,Ee,i) TEHP=,5_RB$(EI(I_J_i_+EI(I_J_))XCVI
IF(J,K_,i) TEHP=,5_RBS(EI(I_I_K;+EI(I_K})_CUI
RHUL_Z_J_Kj=_,_70E-US_eRT(TEHP_3)/_TEHP_198,6)
CONTINUE

Figure 4.3 Section of TURBDA

CV£ = £.0/¢v
DORLL Z=i_ IL_J=J$Z_J£_K=KZi_KE_! USING /RI_/,/RS/_CUI

ZF<J,NE,I ,AND, K,14E,I) TEHP = RB$_EI<I_J_K}>_CVI
ZF (K.E_.I) TEMP=U.5×RBS(EI(I_J_Z)+EI(I_J_))_CUI
ZF(J,EQ,I;TEMP=U,5_RB_(EI<I_I_K;+EI(I_K})_CUI

RHUL_I_J_K; = _,ZTOE-USxS@RT<TEHP_3)/<TEHP+198,6>
ENDD_; GIUZNS /R6/

Figure 4.4 FMP FORTRAN Version of Section of TURBDA
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4 •2 •2 •2 Geometry

When planning the discrete representation of a real-world system,

three major steps are usually involved. First the geometry or

general structure of the model is defined together with any sub-

structure expected to be used during definition of the structural
and temporal relationships of the model. In general, all of the

discrete points or elements of a model will be incorporated into a

set. Algorithms used to map this form of the model onto the
hardware will be described in Section 4.2.2.2.7.

The examples of the proposed language constructs which follow are

based on physical models and corresponding cartesian coordinate

systems. These concepts apply as well to transform spaces.

The geometry of the model is defined by first describing a sub-
structure of single dimension. This substructure is then used to

describe structures of higher dimension. Since the points of the

discrete model are usually identified with an ordered set of

integers, the construct used, called DOMAIN, is capable of build-
ing ordered sets. For example,

DOMAIN /X/ : L=I, MAXX

Here the name of the domain is "X". The domain is an ordered set

of values as defined with the implied-DO form. If M_XX=5, then

/X/ = {i,2,3,4,5_ . Two such linear domains can be used to define

a two-dimensional domain. For example:

DOMAIN /LAT/ : I=l, IMAX

DOMAIN /LON/ _ J=l, JMAX

DOMAIN /LAYER/ : /LAT/.X./LON/

Here the domain LAYER was defined to be the Cartesian product of
the two linear domains LAT and LON. The result is that LAYER

consists of all (I,J) pairs.

Two forms for describing geometries of interest will be described

below. The first, called DOMAIN, allows the user to define the
overall structure or framework of the model. As in standard

FORTRAN, this form establishes the maximum structure of interest

in the problem, and is used in the mapping to hardware to properly
allocate storage and processors. The second form, called REGION,

is used to dynamically specify an arbitrary set of elements from a
domain.

4.2.2.2.1 DOMAIN Declarations. The domain declaration can take

either of two forms; direct specification or construction.

For example:

DOMAIN /JK/: J=l, I0; K=I, 15
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Note that if more than one domain-variable-set is included, the

resulting domain is assumed to be the cartesian product of the

individual linear sets defined by each domain-variable-set. In

the example above, the domain JK consists of all (J, K) pairs

where J is from the set 1,2,3, ..10 and K from the set

1,2,3,...15 .

DOMAIN /J/: JJ = i, 10

DOMAIN /K/: KK = i, 15

DOMAIN IJK/: IJl. X./K/

_]e last domain, JK, is defined as the explicit cartesian product

(cross-product) of the sets defined in domains J and K.

%

The syntax charts below use the same conventions as in the FORTRAN

77 ANSI standard document [10].

The syntax of the DOMAIN declaration statement is as follows:

domain-statement: _DOMAIN------_

_ domain_specparameters

[--- /-d°main name-/: _ domain construct expression__

A domain-name follows the normal FORTRAN rules for

variable naming, and may not be the same as the name of

any common block.

71

iI

domai n_spe c_par amete rs :

_ domain_variable set

R:'PRoF'_"I'

domain variable set:

domain_variable = - integer express ion{ , integer expr_

J.

>
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A domain-variable is an integer variable.

The domain-variable is used only for notational conven-

ience during the definition of the domain. The domain-

variable does not remain "attached" to the domain during

execution. Other means for referencing elements of a

domain are described below (instance-identifier-lists and

instance-variables).

The integer expressions are evaluated at the point in

the program where the domain is declared. The domain-

variable-set establishes a sequence of values exactly as

for a DO-loop. If the last integer expression is omitted

it is taken equal to 1 by default.

domain_constructexpression

.N._

_-/ domain_name /

--domain spec parameters

i_(domain construct expression)

A donain-construct-operator is a set operator used to construct a

new set from two previously defined sets. The d_fined domain-

construct-operators are as follows:

.U. (union). The resulting domain includes all the elements

of both domains. All elements in the resulting domain are

unique (duplicates are deleted). The dimensionality of the

resulting domain will be that of the operands (which must

match).

.I. (intersection). The resulting domain includes only ele-

ments ,:hat are present in both domains. Dimensionality of the

operands must match.

.X. (product). Each element of the resulting domain corres-

ponds to a pair of elements (one from each of the operands).

_]e dimensionality of the resulting domain equals the sum of

tile dimensionality of the two operand domains.

2
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•N. (relative complement). The resulting domain is the same

as that of the first (left-hand) operand with any elements

which occur in the second (rlght-hand) operand removed. The

dimensionality of the operands must match.

The precedence order for the domain-construct-operators is
•X., .N., .I., .U.. Evaluation is from left to right_

Parenthesized expressions are allowed.

The size of a domain may be variable even if the domain is not

a dummy argument to a procedure. The domain is defined at run

time on entry to the procedure. Each procedure invocation may
cause a different-sized domain to be defined.

The variables defining the extents of the domain in the domain-

variable-set may be changed during execution of the procedure.

Such change does not have any effect on the size or shape of
the domain. Once the size and shape are determined on entry

they are fixed for the duration of the procedure.

Dimensionality is the number of domain-variables
needed to deflne" the domain.

4.2.2.2.2 Examples. The following are some examples of legal

DOMAIN declarations together with the actual DOMAIN defined.

DOMAIN /LONG/ : I = 1,4

2, 4}

DOMAIN /LAT/ : J = i, 5

{i, 2, 3, 4, 51

DOMAIN /ODDLAT/ : J = i, 5, 2

{i, 3, 5 7

DOMAIN /NORTH/ : J = 5,5

{5}

DOMAIN /SOUTH/ : J = I, 1

{1)

DOMAIN /MIDLAT/ : /LAT/ .N. /NORTH/ .N. /SOUTH/

{2,3,4}

DOMAIN /LAYER/ : /LAT/ .X. /LONG/

{(i,I) (2,1) (3,1) (4,1) (5,1) (1,2) ... (4,4) (5,4)}

DOMAIN /LEVEL/ : K = 1,2

{1,2}

DOMAIN /ATMOS/: /LAT/ .X. /LONG/ .X. /LEVEL/

{(i,i,i) (1,1,2) (1,2,1) (1,2,2) ... (5,4,2) 1

An alternate form of the above is

DOMAIN /ATMOS/ : /LAT/ .X. I=i,4 .X. /LEVEL/
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4.2.2.2.3 Restrictions The prototype compiler should have a

domain dimensionality restriction to four domain-variables. This

restriction would help limit the problem of ,lapping to hardware

resources to an acceptable level of complexity. This restriction

would likely be lifted with later releases of the compiler.

4.2.2.2.4 Scope. The scope of a domain-name and the corres-

ponding set---_ points is a program unit. The scope of a

domain-variable is the domain-declaration statement. When the

same domain must be used in several program units, it must be

delcared within each of them (like a named common block).

4.2.2.2.5 Required Order. The position of a domain-declaration

statement within a program is the same as "other Specification

Statements" (see Figure 4.5).

Comment

Lines

FORMAT

and

ENTRY

PROGRAM, FUNCTION. SUBROUTINE, or

BLOCK DATA Statement

PARA34ETER

Statements

DATA

Statements

IMPLICIT

Statements

Other

Specification

Statements

Statement

Function

Statements

Executable

Statements

END Statement

Figure 4.5 Required Order of Statements and comment Lines

in a Program Unit

4.2.2.2.6 Application and Usage. The DOMAIN specification will

be used to define all those discrete points o£ the model at which

state information and/or processing will exist. Each discrete

point of the structure or substructure of the model will be

represented by an element in some domain.
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4.2.2.2.7 _ The geometry as specified must be mapped onto
the available hardware as a mapping under which the actual

modeling and simulation will run. Many possible mappings exist

with many tradeoffs to consider.

A simple static mapping was proposed and used during the appli-

cation analysis. Such a static mapping is easiust to implement,

and results in the least compiler complexity. With such mapping
the least run-time overhead is devoted to mapping and concomitant

data rearrangements. With this mapping, the linear representation

of a domain is mapped to its corresponding processor number modulo
the maximum number active processors. The linear represent at ion

of a domain is the same as the storage order of an array with the

same subscript values and subscript variable order as the domain-

-variables. For example for an 8 processor system, domain LAYER

would be allocated as shown in Figure 4.6. The compiler code

should be sufficiently modular that other mappings can be uasily
evaluated.

The static mapping was used during the application analysis
summarized in Chapter 3. The application analysis results show

that such a static mapping will support the applications studied.

Thus, the FMP is feasible to implement, even without possibly more

elegant mapping techniques.

DOMAIN /LAYER/ : J=l,5 .X. I=1,4

PROCESSOR

0 1 2 3 4 5 6 7

(i,i)

(4,2)

(2,4)

(2,1)

(5,2)

(3,4)

(3,1)

(1,3)

(4,4)

(4,1)

(2,3)

(5,4)

(5,1)

(3,3)

(1,2)

(4,3)

(2,2)

(5,3)

(3,2)

(1,4)

Figure 4.6 Modulo Mapping of Elements of a DOMAIN to Processors
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Many other possible mappings exist. Another simple static mapping

is where the first "n" elements would be assigned to the first

processor, the next "n" elements to the next, and so on. Here "n"

is defined to be the next integer equal to or larger than the

total number of elements divided by the number of processors. In

the above example, domain elements (i,I), (2,1), (3, J) would be

assigned to processor 0; (4,1), (5,1), (1,2) would be assigned to

processor I, etc.

Another consideration could be the locality of reference. In this

case elements cou]d be mapped so that the processes associated

with all elements assigned to a processor tend to ref_..rence data

already physically in that processor thu.'_ reducing trall [c to the

extended memory. Dynamic allocation strategies could al:_o be con-

sidered. However, dynamic allocation must balance the b,_nefits of

a possible mort. uniform use of all processors with the Likelihood

of increased mov,,ment of data to and from the coma1_on memory. (in

a static mapping, variabh_s which are referenced only by the

instances within a processor could be assigned storage space

within that processor.) Furthe[ study is needed to determine the

most cost-effective strategy.

4.2.2.2.8 REGION Statement: Facilities to identify a REGION of

active interest within specified DOMAINs are providt, d. R1_ese

REGIONs do not constitute a separate structure. Essc:lltially, a

REGION is a virtual domain with dynamically selected ,,lements of

the original DOMAIN. The elements may be sparse or dense,

rectangular or skewed sections of domains. The REGION declaration

may be used to explicitly create a virtual domain with dimension-

ality grt, ater than its original domain or to define which portion

of a DOMAIN is to be "processed". The specification o[ a REGION

may be dynamic. The general form of the REGION declaration is:

For example

REGION/JKPART (J=l,5; K=l,9)/= /JK(J+5, K+2)/

The values o[ J and K specified for the region named JKPART are

subst[tut-_d in the expressions associated with domain JK to

determined the correspondences. Specifically:

JKPART (I,i) is "equivalent" to JK (6,3)

JKPART (2,1) is "equivalent" to JK (7,3)

JKPART (2,9) is "equivalent" to JK (7,11)

re_]ion statement: --REGION

/ region_name (domain_construct_expression*) / --

_--- = / domain name

(_integer expressions)/,

9
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domain construct_expression* is the same as the construct defined
earlier except the / domain name / part may not be used. The
domain variable names are not variables to which values are

assigned. Rather they are dummy names used to define the mapping

which identifies that part of the domain which is the region of
interest.

Each of the integer_expressions may be a linear combination of the
domain varibles used as part of the REGION declaration. Refer-
ences "to intrinsic functions will be truncated to integer if

necessary.

If the REGION is to choose a one-to-one mapping to DOMAIN elements

in the same order as in the DOMAIN, the "*" identifier may be used

instead of an integer expression for that domain dimension.

i

4.2.2.2.9 REGION Declaration Examples. Assume that the following
DOMAIN declarations exist:

DOMAIN /LAT/ : I = i, 20

DOMAIN /LON/ : J = I, 30
DOMAIN /LAYER/ ; /LAT/ .X. /LON/

The following regions correspond to the drawing in Figure 4.7.

REGION/LAYER1 (I=I,5;J=I,IO)/=/LAYER (I,J+10)/

REGION/LAYER2 (I=I,IO;J=I,10)/=/LAYER(I+5,J)/

REGION/LAYER3 (I=I,10;J=I,10)/=/LAYER(MOD(I+I5,IMAX),J+20)/

Note in LAYER3 that LAYER3 (i,i) = LAYER (16,1)

LAYER3 (5,1) = LAYER (20,1)

LAYER3 (6,1) = LAYER (l,1)

LAYER3 (10,1) = LAYER (5,1)

4.2.2.3 Model State

After defining the geometry or structure of a model, the state of

the model at each point of interest in the defined structures and
substructures needs to be described. The state can be described

through the use of the various variable types and declarations
available in FORTRAN. Since with the applications of interest,
the state variables are the same at all points throughout the

structure, a new construct, called INALL, was defined to help

simplify the description of the state throughout a structure. For

example, the declaration:

REAL INALL /LAYER/ WNDVEL, WNDDIR, T, P
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Figure 4.7 Example Regions Selected from Domain LAYER
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defines the variables called WNDVEL,WNDDIR,T, and P. Unlike
standard FORTRAN,this declaration specifies that each variable
occurs "INALL" of the discrete points defined by the domaincalled
ATMOS.In other words, a different variable WNDVELegists at each
point or element of the domain LAYER. (Recall that LAYERwas
defined in the exampleaboveas

DOMAIN/LAYER/: I=i,20;J=i,30

Variables defined with the INALL statement can be used in FORTRAN

the same way as dimensioned variables as described later. In such

a use, the subscripts identify the point (element) of interest in
the structure.

The result of the INALL statement is a set of wind velocity, wind

direction, temperature and pressure variables at each point of the

domain. The storage reser_,ed would be the same amount as a
dimension statement of the form

DIMENSION WNDVEL(20,30), WNDDIR(20,30), T(20,30), P(20, 30)

However, unlike variables declared with standard dimension state-

ments, the "inall-variables" can be considered to be simple,
unsubscripted variables when defining the process to l,e simulated

at each point in the model, as described later. When the names in

the INALL declaration have dimensionality, the implied subscript

positions of the domain variables precede the subscript positions

whose dimensionalJty is explict.

4.2.2.3.1
the form :

INALL Declarations. The INALL declaration would take

inall statement:

_-INTEGER

_-REAL

_-COMPLEX

DOUBLE PRECISION _

LOGICAL

INALL.

L/domain_name/_--_ inall.variable

4-17
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If a type is declared, it applies to each of the inall variables

listed. The inall variable can be a variable name, an array name

or array declarator. If no type is specified, each inall variable

on the list will be implicit type or as specified in a-separate

type statement.

The INALL declaration serves the dual function of declaring the

type of the variables on the list and of declaring storage require-

ments. The INALL declaration semantically indicates that each

element of the domain defined has associated with it variables

identified in the list. Thus, if there are i0 variables on the

list and if the domain declared has 3 dimensions with extents of

3, 4, and 5, then the storage space reserved would be 3"4"5"10 or

600 storage units.

4.2.2.3.2 Scope. The scope of the INALL-variable name is a

program unit. If an INALL variable is in a named common block,

all names in that named common block must match in the several

program units where they occur.

4.2.2.3.3 Application and Usage. Each element of a domain will

include the set of declared inall-variables. That is, a unique

set of inall-variables will exist for each point in the domain.

The language constructs used for referencing these variables are

described in Section 4.2.2.6.

4.2.2.3.4 Mapping. The physical storage allocated for the inall-

variable set corresponding to each point of the speciEied domain

would be allocated to the storage of a physical processor in the

same manner that the domains are mapped (see Section 4.2.2.2.7).

As a result each processor will contain as many inall-variable

sets as the number of elements assigned to that processor for each

domain. Figure 4.8 is an example of this allocation.

The purpose of the DOMAIN and INALL statements is to define an

application-oriented data structure. The structure is hier-

archical. The major divisions (the grid) are defined by the

DOMAIN statement. The subdivisions are defined by the INALL state-

ment and consist of the state variables and arrays defined to

exist at each grid point. The data structure definition is inde-

pendent of how the structure is mapped onto the storage of the

FMP.

4.2.2.4 Process Modeling

Once the structure and state of the model have been defined, some

means of describing the process to be modelled must be provided.

This description is done in two stages. First, the general flow

of the sequence of events which occur during the l_L-oct,_s would be

described. This general flow description allows the dependence of

subprocesses over t ime to be defined. Second, the detailed

relationships that exist within the defined structures and

substructures are defined. These relationships exist for each of

the events. The dynaJnic "behavior" of the discret_ system is

defined by the combination of the general flow and thc_ detailed

relationships.
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Standard FORTRAN is a language with inherent sequential depen-

dencies. That is, execution is constrained to be one statement at

a time in a well-defined order. The general flow does have such a

sequential dependency. Standard FORTRAN control constructs can,

therefore, be used to describe the sequential dependency.

However, when modeling real processes, there are also concurrent

actions which must be considered. If the language provides a

means for describing the concurrency naturally inherent in the

processes being modeled, the the mapping of the abstracted process

to the hardware will be more straight forward and the user should

find it easier to define the abstraction. This concurrency in the

general flow can be described with the construct called DOALL.

4.2.2.5 DOALL Construct

The basic form of the DOALL construct was shown in an earlier

exalaple (section 4.2.2.1). Recall that a segment of standard

FORTRAN code (which describes the computation required to evaluate

the process of getting new values from old values) is started with

a DOALL statement and ended with an ENDDO statement. Figure 4.9

is another example. This is a section of the FMP FORTRAN version

of SMOOTH (see Appendix A for a discussion of the application

code). Note the region THREED. This region is three-dimensional.

Variables SS, TI, T2, TS, T4 and a vector CT(5) are defined at

.each point in the domain MODEL. The statement marked _ is the

4. conkrol statement that indicates that all statements_-_-from that

potent to the statement marked Q are considered to be replicated

(one set of statements to each point in the domain), that each set

of statements (called an instance) is independent from all other

sets and that all sets of statements could execute_, concurrently

(given sufficient resources). The code marked _) tests to

determine whether the particular domain point is in either the J=2

or J=JMAX-I plane. If so, then the next few statements are

executed. If not, the statements following the ELSE are executed.

Note that these sequencing decisions within an instance are based

on data unique to the instance and do not depend on any other

nstances. Also note that the statement following the one marked

is not permitted to begin until all instances have completed
execution.

It is interesting to note that if there are fewer processors than

instances to be evaluated, then the work would be spread out

across the processors. Each processor would evaluate more than

one instance. Since only one set of code would be required per

processor, multiple instances are executed simply by cycling

through the code for that segment. The term cc_cles is used to

indicate how many instances a processor has evaluated of the

currently executing doall construct. The allocation of specific

instances to processors would be static and would use the scheme

previously discussed with regard to assignment of elements of a

domain to processors (which is the same problem).
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Figure 4.9 Section of FMP FORTRAN Version of SMOOTH
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4.2.2.5.1 Construct Definition.
construct is:

The specific form of the DOALL

doall_construct:--doall_statement--doall program segment --_

_----enddo statement

The doall statement is defined as follows:

doall statement: --DOALL

ruse list -_

The main purpose of the DOALL construct is to identify those

processes (in the doall program_segment which can be concurrently

evaluated. The doall_statement identifies the points (grid

values) at which the doal!_program segment would be evaluated.
The points may be previously defined (as a domain or region) or
may be defined as part of the doall statement.

m

omain_ident if ier:
/ domain name

7 rag ion--_name _

_--- (U inst ance_variable _-_ )_

t

/

Each instance-variable is an integer variable and is unique from
all others on the list. Each instance-variable represents one of
the dimensions of the declared domain. Instance-variables are not

required to be the same as the domain-variables used when the
domain was originally declared. For each instance the set of

value_ assigned to each of the instance-variables at the start of

evaluation of each instance is the set of values used to uniquely
identify that instance. The scope of the instance-variable is the

doall-program-segment. The instance variables are allocated

stor_;e in the local processor memory.

domain snecifier.

/ domain name /:

domain_construct_expression
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The domain-namecould be included on the ENDDOstatement which
terminates the construct (to assist in program readability). When
a domain is declared as part of the DOALLstatement itself, its
scope is local to the DOALL-program-blockitself. The domain-
variables used in the domain-specification-parameters become
instance-varlables as described above in addition to being used to
determine the extent of each of the dimensionsof the domain.

The doall-program-segment is a set of _P FORTRAN statements which
describe the process to be evaluated at each point specified. In

terms of the model, the process defined in the doall-program-

segment is conceptually evaluated at all points simultaneously.

In addition, the process at any one point does not have access to

the values computed by the same process at any other point in the

model. Figure 4.10 shows this independent, concurrent structure

in a "flow-chart" form. The evaluation of a doall-program-segment
at a given point is called an instance. All instances of a

doall-program-segment will complete execution before executing the

next statement in sequence after the ENDDO. Although conceptually
all instances execute concurrently, the actual order of execution

is dependent on the processing resources available. The only

implementation requirements are that all instances must complete

execution prior to continuing with the next statement after the
ENDDO.

The use list is to spe_ifically identify which variables or arrays

are used within instances of the doall-program-segment. The

specific form is:

=

!i
<,:_,,_,_

use list: --
;USING

variable_name

/ common block_id/

inall variable

array_name

I
_--/ domain name /

The purpose of this USING clause is explained in more detail later
(section 4.2.2.6).

The last statement of a doall construct is the enddo statement.

enddc _statement •_ ENDDO --)

C

y,' _7-_._regd°main--name _/_ g ene ratelon_name , list

f

%
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generate list: --IGIVING---- 
variable name

_/ common block id /--

inall variable

arrayname

i____/ domain name /

The generate list specifically identifies those variables or

arrays produced for reference upon completion of the doall

construct.

4.2.2.5.2 Serial FORTRAN Equivalent Fo_m. Any DOALL co_lstruct

can be simply represented ii] standard FORTRAN with nested DO

loops. The depth of nesting matches the dimensionality of the

domain over which the DOALL is defined. In fact, the domain-

variable-sets (See Section 4.2.2.2.1) used to de_ine the domain

become the control part of the DO statements.

4.2.2.5.3 llested DOALLS. The doall-program-segment may itself

include a DOALL construct. Since the application programs of

interest did not require this construct, no evaluation of possible

run-time efficiency or inefficiency has yet been made. Since

dynamic resource allocation has not been proposed yet, nested

DOALL's would be statically decomposed to serial form.

4.2.2.5.4 Mappi_____ngt The mapping of the doall-program segments is

the same as that descriDed for an element of a domain. However,

since each instance executes the same doall-program-segment, only

one copy of a program-segment need be kept by each processor.

4.2.2.5.5 Restrictions. No instance of a doall-program-segment

may reference the results of the current computation o£ any other

instance in the same doall-program-segment. Each doall-program-

segment has access to all of the values of the model at the start

of that program-segment. The entire DOALL construct must be

treated as a whole in order to control the implementation and use

of the construct. For example, consiOew a hypothetical sy:_tem

where such a restriction did not exist and suppose that the

computations performed in one instance did use the value of

variables in another instance of the current doa]l-prog_:am

segment. Under these conditions, successive runs of the _,rogram

are likely to get different results since the time o_er of

execution of the two program segments is not necessarily the sam_

from one run to the next. As a result, the vari_,ble values

fetched from the s_cond instance are either old values o_ _ ,re new

values, but with no control or "knowledge" of the ,,ncom[,assing

program that such a variation occurred. Programs w_ ul, i be very

difficult to debug in such a hypothetical system.
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Since no referencing between instances of the currently executing
doall-program-segment is allowed, the results of evaluation are
completely independentof the order of execution.

Becauseof the concurrency expressed in the DOALL construct, the

arbitrary transfers of control which are allowed in standard

FORTRAN must be restricted in FMP FORTRAN. No trans£ers irate a

DOALL construct may be made. Within a DOALIJ construct, normal

FORTRAN control constructs (IF, GO TO, ...) are a lie)wed, but

control must remain within the DOALL construct. All instances

exit via the ENDDO. N,) transfer:_ gut u| an in_tanc.,, at,, allowed.

4.2.2.6 Variabl(_, Retercr, cing

The standard FORTRAN L_ef(:}_:rlcing conventions alJply. One extension

has |,cen defined tu simplify the description el the models of

interest. This extension sup[_orts the cuncept of "centered-

subscr ipt s".

4.2.2.6.1 Re£erc,,cing Within a DOALL-_jrogram-segment. 'l'he DOALL

constL'uct described above, is used to define the time s,:quencing of

a modeling process. At each discr_Le ti,m :;Lel,, s()m(: sort of

interaction between th,: various par|s el a m,),l, l take:_ place. In

particular, the modelling task ,ilay involv,, th,: u._;,:_)I g,n]cral :;tare

variables, of. state _ariab|e_ _,, u_%iqu_: to <:ach _I, m, ht ,_[ ;] _h)h_,_ih

and intermediate var_ ables used dL] _'il}g t h. ,'v;;[u_! i_)n of a

process. General sitar,., variables _.|re u_;ed i,__ ,h.:::(:y:Ji,,. _*,_ uvor_[l

process or st ruett, ru _ no may |,c ref,;i-c=_]c¢c] wi.b n_ ,]d<'i; iq: t.l_-Jc,,.

q%le .';_ate val: [al-,Iu:-; d,-,[J {le_l _t _,acli lx_int ,Jl ..i (jr_{;..: . |h,.i? b,:

}" " ( J [1 'Z { ' ( ' { ] $ J l" J ( { i') y [ "{ L-- ( ) [ _ ( _ Yl [ J ¢ J _ ' { ( : i ill''({ ;|( O[_i{(-zr ]2¢)i{i[;;. }[r._p ,',:-', t]l,_

il'lt(:[-;{l(!(| i .'_,L: V;_'J U,:',_ uhed (lur_ 1},1 tile ,:v_, !uat ion o[ a {,r,_k:.,_;:; w¢,ut ,]

b,: el c,H{c,.['i, oti[y to each i,,stal_c¢ .led l]Ot t_) ,uly ,llh,",,_,. ._.

_rcl',r I ,_ hdv, a_ or-k:r [y flow el d,_t;_ an,:i ,'1'[ local iol_ el ;;t,)ra_j, il!

Lhe syst, ;:;, :;, ,., I .:ll]gU;{(|(? COllSL[ Llct :g ]ld\,.J i_uul_ I)rOl .,, ;ed Wl, i ,?h

relat,_ _ t1_,, ,d>,)vu dei),:'ll,{_nciu:_.

The 9cneval :;taLe va_Jal,le:; (Lllo_;c w,:-iab]es wl,J_:l, a!,l,ly :_(:, all

points of a dom,,ln oI: re, l£n,) will b,: called GLOBAL variables.

Those state va[iab[e.<; which have [,cell de££l_e(! £or _a_ h of the

points of a domain w] |I be called ,qTRUCTURE vari,d;:es. Any

variables witl_ values u,_neratc(| and used only within an instance

will be called LOCAL va_:iabies. Note that GLOBAL var[]l,les would

hot be defined using ]NALL stat:,:,Bel]tS.

The difEerentiation el these different "classes o! use" is impor-

tant in a multiprocessor such as the I'MP because o! the added

complexities el stordge allocation and storog<_ manag,]m,,nt. The

additional constructs already defined provide application-oriented

ways to define variable u,_;age t<_ the com_)ller.



The USINGand GIVINGclause:_of the deal] and enddo r:;taternentsare
a natural way to explicitly c]elJne th,! data-d,:pendc,ncy el the sys-
tem modeledat the process-lcw_l. 'l_ir. compiler, in turn, will use

the:_,, :_tatemcntq, togctheL" with anaiy,_is of the source cc,c],:, to

produce code to initiate early requests o£ data transfers from EM

to the processors and back, thus further improving throughput by

allowing moL'e overlap of execution with fetching data from the

Extended _%emor y.

Any varial,le tl;_c,d w_thJll a ¢loall-program-segrn_:llt but not d_:clared

in the I!SING cl ;IH;;O IRuF_t bt' :_,:}f-d,;fJ ni ng with ill _:ach il_qtance

pric)r to Jtq u:;t:. 11 ;_ variable is li_,t illcltl(]ed irl il tJSIN(; or

GIVING c]au::c th,_ iml:lication is that the.' variabl,, iq only rm_ded

teml,_t'arily during the: ,:valuation el th,_ prates:;. Thu;;, in order"

to corl:-;ider stol-/lgc: requJ.r_!lllel]ts, variab].,2:-_ not decl;lt',.d eitller

USING at: G1V1NG n,.r_ed exi:-;t only for each "actiw-" instance., ratller

than for each instance, (An "active" instance is _,n irlstllnce

which is being ,..'xectl_,:d by a proce:-;sor resourc,.., )

If a vat_ial,l,_ i:: included on a USING or GIVING clause, but is not

included in an INALI, d,..claratiul,, the implicati,,n i,; that all

instances of the., doall-program-segm_;nt will ref,.renc,' tlxu same

variable (GLOBAL variable). When this condition occurs;, the com-

piler would aIlocatce space foL- such a variable in each processor

and generate code which would cause the value of such a variable

to be broadcast to all p, ocessors rather than requiring each

instance to separately request access to that variable. Variables

of this sort were previously called "CONTROL" [[,2].

If a variable is included on both a USING or GIVING clLiu:;e and on

an INALL declaration, the implication is that each in_;nancc will

require its corresponding INALL variable (recaLl that INALL

creates a variable for each point in the domain). Special sub-

script forms defined in the next section can be used to reference

INALL variables in other instances.

Figure 4.11 summarizes the variable use interpretations based on

the statements defined.

The importance of the independence of the instances of a deal1

program segment has already been pointed out. All GI,OBAL and

STRUCTURE variables as well as all instance identifiers (used to

identify the set of indices which define the point in the domain)

can be considered to be preinitialized to their value Ul,On entry

to the DOALL construct. At that point, at least conceptually, the

evalu,ation rules within a particular instance are int,._rpreted in

class [cal FORTRAN fashion except that the va [u,_s a:_:;igned to

GLOBAL or STRUCTURE vaL-iables can be referenced only by the

instance which did the assignment. All other instances would

contiuue to reference the original values. Similarly, a set of

instaltce identifier variables wouh] exist for each instance. The

initial values in the set for a particular instance would identify

the instance. Any changes made to the values in one s,.t could not

be observed within any other instance. The FMP (har_lware and

software) will enforce these referencing procedures.
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declared
INALL
on

DOMAIN

YES

NO

r

in any USING or GIVING clause

YES

STRUCTURE

GLOBAL

NO

LOCAL

LOCAL

Figure 4.11 Variable Use Interpretation

4.2.2.6.2 Centered-Subscripts. The intent of the new constructs

described ( DOMAIN, INALL, DOALL,... ) }]as been to al low the

description of a model and the modeling process as [t reflects the

process and state at each discrete point of the stt-uctures of

interest. References by the doall-program-segment to variables in

the same element of the DOMAIN as the instance need only be by the

simple name• For example,

REAL INALL /ATMOS/ T,WNDVEL, AB(7)

is a statement declaring variables T and WNDVEL and a vector AB at

each element of the domain ATMOS. In the following program seg-

ment, hhe process defined compu _s new values which are a function

only of old values in the same instance:

DOALL /ATMOS / USING WNDVEL, AB

T = (AB(1) + AB(2))/2

WNDVEL = (WNDVEL + AB(3) + AB(5))/2*AB(4)

ENDDO /ATMOS/GIVING T, WNDVEL

Many models have dependencies between elements of the structure.

When describing processes of this type, a natural approach is to

describe the process centered at a particular element ;_nd consider

the rest of structure with respect to the centered element. When

referencing INALL variables in other instances, a susc_ipt is used

in a manner similar to normal array and vector referencing in

standard FORTRAN.
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Another example might be:

i

0

DOALL /ATMOS (I,J,K)/ USING T

T = T(I,J i)

ENDDO /ATMOS/ GIVING T

llere the new value of T at each element of the structu_+_ is made

equal to the original value of T on the lower plan_. • of the

structure. (i.e. All elements of a column of /ATMO8/ have the

same value of T as the value of T in the first element of the

column.) Note that I and J are constants throughout the doall-

program-segment since they are the instance-variables. The "*"

may be used to indicate the value of the instance-variable corres-

ponding to the e[_._ment of the domain. For example, another way of

writing the preceding example is:

DOALL /ATMOS / USING T

T = T(*,*, I)
ENDDO/ATMOS/GIVING T

When variables in adjacent elements of a domain are to be refer-

enced, subscript expressions may be used. For example:

REGYON/CENTRAL (L=I,IMAX-2;M=I,JMAX-2;N=I,KMAX-2)/

=/ATMOS(I+I,J+I,K+I) /

DOALL/CENTRAL(I,J,K)/USING T

T = (T + T(I+I,*,*) + T(I-I,*,*) + T(*,J+I,*) + T(*,J-I,*)

1 + T(*,*,K+I) + T(*,*,K-I))/7

ENDDO/CENTRAL/GIVING T

+

! •

/.
j

!! 4-29
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In this example a REGION was declared that excluded the outer

boundary of ATMOS. The DOALL computed new values of T based on

all immediately adjacent values. Note that variables declared

INALL over a DOMAIN are also accessible to any REGION o£ the

DOMAIN just as if they had been declared INALL on the REGION.

Also note that values of T at adjacent elements of the DOMAIN are

used to compute new values of T at each element of the REGION.

All computation is based on the values of T throughout the DOMAIN

upon entry to the DOALL construct.

As a last example, note that a doall-program-segment ,,ely treats

values of INALL variables as having initial value up,_,l entry if

the GIVING or USING clause specified those variables. During

execution of a program-segment, the variables may locally be

assigned other values. Only the centered-variables are saved

under the GIVING clause.

REAL INALL/ATMOS/ T, WNDVEL

DOALL/CENTRAL(I,J,K)/USING T

TOLD = T

T = (T + T (I+l,*,*) + T(I-I,*,*))/3

XY(1) = T

XY(2) = (TOLD + T(*,J+I,*) + T(*,J-I,*))/3

XY(3) = (TOLD + T (*,*,K+I) + T(*,*,K-I))/3

T = (XY(1) + XY(2) + XY(3))/3

ENDDO /CENTRAL/ GIVING T

In this example only T(*,*,*) is saved upon completion of all

instances. The array XY and the variable TOLD are I,OCAL vari-

ables. These variables are used only by the active instance. In

order to conserve storage, the same processor memory locations

used for LOCAL variables during execution of an instance in a pro-

cessor can be used for the LOCAL variables of another instance

when more than one instance of a doall_program segment are eval-

uated in any given p_ocessor. Note that the original value of

T(*,*,*) had to be saved since the second statement changed the

value (as far as the particular instances was concerned). In this

way execution of a doall-segment is the same as th<Jt of any

FORTRAN segment with the INALL variables specified in GIVING

clauses initialized as if with a DATA statement upon each entry.

4.2.2.6.3 Unreferenced Variables. In some cases, a variable

identified within a separately compiled sgement, but never be used

within that segment. This happens, for example, if the main

program has a named common area that is used in a number of sub-

routines, and the area must exist in the main program for the

purpose of holding data created by one of the subroutine:_ and used

by the other. In this case, the compiler will not have access to

the USING and GIVING declarations, because of the separate compil-

ation. Uhtil a better way of handling this situation i_ defined,

the declaration of these named common areas will be expanded by

prefixing them with an indication of how they will be used, when

they are used.
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STRUCTUREdeclares that the variables and arrays within tile
given commonblock will be used as if they had been included
in INALLstatements and USINGor GIVINGclauses.

GLOBALdeclares that the variables and arrays in the given
commonblock will be usedas if they had been included in
USINGor GIVINGclauses.

All variables and arrays in a given namedcommonmust be used in
the sameway (i.e. as STRUCTUREor GLOBAL).

4.2.2.7 Storage Allocation

The Flow Model Processor has two major areas of storage to be
concerned with during execution, the main memories of the
processors and the extended memory. The primary use of extended

memory is for the STRUCTURE data (the "old" state values).

Processor memory is allocated to program, and to data storage

space. The data storage space is further divided into temporary

areas used only while an instance is active (the LOCAl, variables)

and into areas which are allocated to each instance resident in

the processor. The data areas allocated to instances hold the NEW

values as well as copies of OLD values. Note that although many

instances of a process may be assigned to a particular processor,

only the data areas reflect that assignment. Only one copy of the

program-segment would exist.

The GLOBAL variables normally have storage space allocated both in

the processor memories and in the EM. This allocation is a space-

time tradeoff. If only the original copy existed in the EM, then

each instance would have to acces:_ it separately with potential

conflicts (when more than one proce:_sor try to access the same EM

location simultaneously, only one iu granted access; any others

wait). If the value is broadcast to all processors simultaneously

(say at the start of a doall), then any references would be to the

local copy already resident in each processor.

4.2.2.8 Independent Compilation

Program units, as with any conventional FORTRAN, may be separately

compiled. Note that there may need to be a distinction between

two classes of subroutines. One class would be those called

within a doall program_segment. These subroutines would be com-

pletely independent of any coordinator code and would have any

embedded DOALL constructs implemented as nested DO loops. The

other class of subroutine would be those called outside a doall

program segment. If a subroutine of this class did have an embed _

ded DOALL construct, both coordinator and processor code would

have to be generated in order to take advantage of the available

processors.

One solution to the above situation is to somehow identify one

class of subroutine from the other. This could easily be done

with a simple construct added to the SUBROUTINE statement itself.

For example
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SUBROUTINEBTRI DOMAIN/J=I,JM; I=I,IM/

This would indicate that BTRI would be called within a two-

dimensional doall and that IM*JM copies of the subroutine should

be available to the instances of the doalls.

Other solutions exist. They include independent compilation for

checking purposes but full compilation to generate code files.

Amother solution would be to provide information concerning

location of doall constructs to the linker and have the linker

include coordinator code where needed. All of the above solutions

are still under consideration to determine the most effective

solution.

4.2.2.9 Code Generation

The compiler will produce code for both the coordinator and all

processors. A very straightforward division of control would

exist. That code required to synchronize DOALLs and to support

interaction with the external environment would be resident on the

coordinator. All other code would be allocated to the processors.

The DOALL constructs just described are simple examples of this.

The processors would each contain a copy of the doall-program-

segment together with some identification of that segment. When

the flow of control of the program arrives at the DOALL, the

coordinator would broadcast a "start segment n" command. When all

instances have completed and all processors have notified the

coordinator with "I got here", the coordinator would synchronize

the updating of OLD values in the EM followed by initiating the

next program-segments in the processors.

Program segments which are not part of DOALL constructs but which

are standard serial FORTRAN could be analyzed by the compiler to

determine any data dependencies. Separate, data independent code

sequences would be defined with the appropriate conditional tests

so that each processor would evaluate one section of the resulting

program segment. The controls in the coordinator would be the

same as for the DOALL case (in effect, a "DOALL" would have been

constructed out of the original code). Since the processors can

all operate autonomously, this approach should result in addi-

tional speed-up on serial codes. A speedup en the order ot 2-5

over straight serial execution is likely from this approach. The

application analysis summarized in Chapter 3 DID NOT assume this

speed-up of sections of serial code. Note that a separate high-

speed "scalar" processor is not required. Each processor is

independently capable of scalar execution, so that concurrency is

not dependent upon vectorization, as it is in today's vector

machines.
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4.2,2.10 Functions

Functions on the FMP will include not only the normal mathematical

intrinsics, such as ATAN, LOG, EXP, and SQRT, but also a family of

functions that are brought about because of the parallel nature of

the FMP. The global intrinsics, which reflect the parallel

structure of the system, are described in more detail below.
Table 4.1 lists the functions which could be provided in FMP

FORTRAN. In addition to listing the function, the table also

lists the expected implementation (such as operator, in-line

expansion, or calls on external function subprograms. Some of the
functions will combine in-line code with external calls and are

marked for both.

4.2.2.10.1 Global Functions. The global functions have no analog
in a serial machine and are not nornally used in the direct

description of a model. These functions are useful in the
simulation controls and in the summary and analysis of the results

of a simulation.

The global functions operate across the declared parallelism
defined in the model structures. Fer example, the following

serial FORTRAN

A= 0.0
DO 1 J=l, i00

A = A+B(J)
1 CONTINUE

would be replaced by

DOALL J=l, i00 USING B

A = SUMALL (B(J))
ENDDO GIVING A

Note that this is implemented in two levels. First the sum of all

the instances assigned to a given processor generate a partial
sum. At the end of the DOALL construct, the coordinator generates

Log 2 p (P = # Processors) operation sequences to associate pairs

of partial sums to get a set of higher-order partial sums. These
sums are then paired and summed successively until one value

remains.
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Table 4.1 Intrinsic Functions (Cont.)

Notes for Table:

Note i. The value returned by INT is that integer of the same

sign as a with a magnitude not larger than _a_ . If a is too
large, integer overflow is reported.

Note 2. The representation of these functions in the FORTRAN

source will use the standard double-asterisk notation for exponen-
tiation. The function called will depend on the data types of A

and B in A**B. The external function called is an alternate entry

into the EXP function subprogram.

Note 3. In FMP format, FIRST and SNGL are different names for the
same function.

Note 4. The values of i mark the elements of a domain. These,
and the following functions occur across all those instances of a

DOALL that execute the statement containing the function. Thus,

with 2 arguments showing in the code, there will be 2x imax actual
argtm, ents, where imax is the size of the domain.

Note 5. LOCTRU finds the instance number of the instance in which

the previous MAXALL, MINALL found a minimum. LOCTI{U with a

logical argument finds the instance number of one of the instances
in which that variable is true.

Note 6. RECURRENCE is discussed below.



i

The result of a global function is not available for use within
the DOALL in which it is called. Since the various instances of a

doall-program-segment may be executed in arbitrary order, any

given instance may complete before some other instance has

provided its input to the global function. Thus, the output of
the function is not defined until the execution of the last

instance. The results of the global function are available after

control passes the ENDDO.

4.2.2.10.2 LOCATION. The LOCATION function operates with the
assumption tha-_value returned is the instance number of the

successful instance of the most recent execution of MAXALL,

MINALL, ... The subsequent use of this instance number as a

subscript depends on the implicit equivalence between a one-

dimensional subscript and a unique multiple-subscript.

For example, given a structure variable A declared INALL over a

domain the laziest element of the array could be determined as
follows:

DOMAIN /LAYER/: I=i,i0000

REAL INALL /LAYER/ A

DOALL /LAYER/ USING A

IPTR = LOCATION (GLOBALMAX(A))
ENDDO /LAYER/ GIVING IPTR

PRINT A(IPTR)

4.2.2.10.3 RECURRENCE. The RECURRENCE function is only defined
over domains active on one-dimension. The RECURRENCE function

would be invoked as shown in the example below:

A(J+I) = RECURRENCE (A(J)*B+C(J))
where A is declared INALL across the DOMAIN.

The prototype compiler should implement only the simple form of
recurrence, with B constant. The additive term need not be

subscripted and may be missing. The constant B may be omitted
when it is equal to i.

RECURRENCE, the global operation, is the formation of a parallel

linear recurrence in nine (=iog2512) steps as demonstrated by
Shyh-Ching Chen in his doctor's thesis at the U. of Illinois [13].
In FORTRAN, consider

DO 1 J=l, 512

A(J+I) = A(J)*B + C(J)
i CONTINUE
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•his program segmenttakes 512 steps, each with one multiply, and
one add. The parallel algorithm in RECURRENCE produces the same
result in nine steps.

Although global sums, global products, and the paraljel linear

recurrence are functions in the language, they are not always the
optimum programming method for producing these particular results.

For example, take the serial FORTRAN below.

DO i J=l,1000

DO I K=I,1000

A(J,K+I) = A(J,K) * B(J
i CONTINUE

) + C(J,K)

There are several ways to write this in FMP FORTRAN given that the
order of nesting the loops is irrelevant otherwise, qWo of them
ares

Method I:

DOALL J=l,1000
DO 1 K=I,1000

A(J,E+I) = A(J,K) *B(J
1 CONTINUE

ENDDO

) +C(J,K)

Method II :

DOALL K=I,1000

DO 1 J=l,1000

A(J,K+I) + RECURRENCE (A(J,K) * B(J
1 CONTINUE

I:NDDO

) + C(J,K))

Method I, which executes the recurrence serially in an inner loop,
runs ,_ver nine times as fast as method If, which executes each one
of the recurrences in parallel across each value of J in turn.

That is, method I is 512 times as fast as a single processor,
while method II is 57 times faster than a single processor. The
global functions are included for those cases where method I is

not an available option.

4.2.2.10.4 Efficiency of GLOBAL Functions. The global functions

are logarithmic in effic-{-ency for domains up to 512 in size. That

is, it takes nine steps to produce the 512-way result across all

512 processors. For larger domains, the global function is
executed serially with respect to all those instances executed on

each processor (called CYCLES). As a result, the number of steps
requited for SUMALL, for example, is N/512 + 8 where the domain
has N elements.

%
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4.2.2.10.5 Direct Calls on Global Functions° An alternative

construct for g_l_-_io-_ _-s:

global-function-name /domain-name/ (argument-list)

For example:

S = SUMALL/DD(J)/(A(J))

is equivalent to

DOALL /DD(J)/ USING A

B = SUMALL(A(J))

ENDDO /DD/ GIVING B

This form is the equivalent of single-statement DOALLs when the
statement is a global function.

Boolean global functions may be used directly in IF statements
once evaluated, For example:

IF (ANY /DD(J)/ (A(J)))i.,

is equivalent to

DOALL /DD(J)/ USING A

DUMMY = A_Y (A(J))
ENDDO /DD/ GIVING DUMMY

IF (DUMMY) ...

When LOCATION directly £ollows such an implied single-statement

DOAIL, the compiler combines it into the DOALL of the previous
global function.

For example

MM = MAXALL/DD/(A(J))
IX = LOCATION

is equivalent to

DOALL /DD/ USING A

MM = MAXALL (A(J))

ENDDO /DD/ GIVING MM
IX = LOCATION
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4.2.2.11 Assignment Statements

The following pertains to execution within each instance of a

doall-program-segment. Recall from sect_ 4.2.2.6.1 (and Figure
4.11) that three classes of variables exist in doall-program-

segments. They are called GLOBAL, STRUCTURE, and LOCAL.

All STRUCTURE variables have their old values when any instance

begins execution. Assignment to any structure variable from
within an instance will result in the new value being available

unly within that instance. Other instances would still refer to

the old value unless they too had executed a similar assignment
statement. Once all instances are complete, the STRUL_URE vari-

ables are all up_-_ed with the new values computed within the

instances.

Assignment to a GLOBAL variable or array element will redefine the
value of that variable within the instance in which the assignment

is made. However, the original value of the variable remains
available for reference by any other instance. Since a GLOBAL

variable must have only one value, a doall-program-segment may

assign new values to GLOBAL variables only through a GLOBAL
function which maps a set of STRUCTURED variable values onto a

single value. Such a new value is available only after the ENDDO
statement. All other apparent assignments to a GLOBAL variable
within the DOALL define the GLOBAL variable to the end of the

inst aD ce.

AssigLment to LOCAL variables may take place at any point during
execution of an instance. Operatio,_ is as with standard FORTRAN

except that upon completion of the instance, the storage space
allocated to such LOCAL variables would be reassigned upon exit

from the doall-program-segment. A compiler option will exist such

that ,OCAL variables would be assigned unique storage locations
for each inscance. In this case, LOCAL variable values would

carry over from one reference to another, even between different
DOALL constructs.

External to a DOALL, all references and assignments to GLOBAL and
STRUCTURE variables are valid. In such a case STRUCTURE variables

must be subscripted.

4.2.2.12 Miscellaneous Features

4.2.2.12.]. Same-line Comments. A reserved character, not in the
FORTRAN character set, will be defined that may be used to

terminate a statement. Thus, anything following on the same

physical card is co_ent. A likely character is "%".

When the syntax of a statement is such that the only allowable
characters on the rest of the card are blanks, the compiler will

not check. Thus, statements like ENDIF, IF (-boolean-) THEN allow

comments to be placed on the rest o_ the card.
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4.2.2.12.2 Recurslon. Recursive calls are allowed. Note, that

although the second, _ nested call on the subroutine gets a second

set of subroutine-local variables and arrays (separate from the

set belonging to the outer call) any named common that belongs to
the subroutine will be the same named common area in both calls.

4.2.2.12.3 DO LOOPS. Since a domain consists of a finite ordered

set, the contr01 of a DO loop can be specified with a set of

domain elements. For example:

DOMAIN /LAT/_ I=I,IM

DO i /LAT/

is equivalent to

DO 1 I=I,IM

If the domain is multidimensional, the order of nesting of ,h_

"implied" DO loops is FORTRAN subscript order. That is, the first

variable is the index of the inner loop. The last variable is the

index of the outer loop.

4.2.2.12.4 EXIT Statement. The EXIT statement can be used to
terminate an--_ividual instance of a DOALL construct. In addi-

tion, a DO loop may be terminated with an EXIT statement. EXIT
statements are permitted wherever executable statements are
allowed.

4.1.2.12.5 Dynamic Array Sizes. Space is not allocated for a
named common until the first program unit using that named common

is entered. Likewise, space is not allocated for variables and

arrays of a program unit until that program unit is entered.
Hence, sizes of common blocks and dimensions of arrays can be and

may be set dynamically during program execution. The only require-
ment is that the expression determining the size be evaluated at

the point in the program where the declaration occurs. In the

case of arrays in named common areas, the size-determining
expressions must evaluate to the same value in every program unit,

or a run-time error is likely.

4.2.2.13 Input Output

All FMP input and output is staged via the Data Base Memory.
Since I/O is inherently serial, a mapping of concurrent execution

to the serial form supported by peripherals is required. That I/O

specified within the serial parts of FMP FORTRAN programs occurs

as specified. That I/O specified within a DOALL over a DOMAIN or
a REGION is processed as requested over time. Since the instances

of a DOALL are independent, no attempt to order I/O of one

instance with respect to another is made although the time

sequence of I/O within any one instance is maintained.
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Formatted I/O is expected to be supported primarily by the Support

Processor since the major formatting load is on output. In addi-

tion, the applications studied were such that input formatting

could be accomplished prior to initiation of an FMP task. As a

result all FMP I/O would be direct I/O via the DBM. These assump-
tions have affected the instruction set choices in the processors

of the FMP. No powerful character handling instructions exist at
this time. Due to the heavy loading of output formatting to

support the COM load (excess of 10,000 frames of graphic info/

day), continued consideration is being given to moving formatting

support onto the FMP. The system as evaluated (with Support
Processor formatting functions) could certainly support the

expected workload. The remaining questions pertain to whether a

more cost-effective solution might exist.

4.2.3 FMP FORTRAN Compiler

As with any large design problem, a compiler development project

involves a number of stages including some means of testing design

ideas. The compiler discussed below is actually envisioned to be
a succession of compilers beginning with what would best be

described as a "prototype FMP FORTRAN compiler". Where appro-

priate, these discussions will point out features or capabilities

planned for the prototype compiler or planned to be deferred to
later versions.

The FMP FORTRAN compiler would execute on the Support Processing

System. Source input, generated code and other output would
reside in the NASF File System.

4.2.3.1 Functional Objectives

The functional objectives of the compiler are:

4.2.3.1.1. Support to the User. Not only should compile-time

messages be clear, but run-time aids should be provided for

debugging, for gathering statistics and for monitoring the dynamic

execution of a program. Other facilities should include gener-

ation of optional memory, array and extent bounds checks.

4.2.3.1.2 Support of the Language. The defined language (FMP

FORTRAN) would be the language supported by the compiler. No

changes to the language or compiler would be made without
consideration of the other.

4.2.3.1.3 Make Efficient Use of FMP Resources. The compiler may

never be capa--_eof implem-_-ti-ng the "most efficient" use of FMP
Resources. This inability is due, in part, to the data-depend-

encies which are run-time sensitive and, in part, to the com-

plexities of global optimization.
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The prototype FMP FORTRANcompiler is expected to implement
limited optimization. The level of optimization at the prototype

stage would be "peephole" optimization giving improved overlap of
the FMP functional elements during execution. For example,

register allocation could be adjusted so that the store to memory

ending one statemert would follow the first fetch or two belonging

to the succeeding statement. Requests for data from EM (LOADEM'S)
would be positioned near the start of a program-segment. This

position should make it possible for CN delays to occur concurrent

with processing. Where possible, integer and floating point

instructions would be rearranged to improve overlap. Optimi-
zation of this sort requires local, straight-_%_ward data flow

analysis probably using the register addresses as data
identifiers.

Since static allocation of the defined processes onto the memory
and processor resources is planned, the resources might not be

used as efficiently as in a dynamic, "load-leveling" run-time

allocation scheme. Unfortunately no efficient, yet simple,

dynamic scheme has been studied as yet. As experience is gained,

static optimization will occur in two major areas; data or

storage allocation and processor allocation. For exam[le, as data-
dependency analysis improves, code can be generated which main-

tains STRUCTURE variables always within a processor if all
instances which refer to those variables are also within the same

processor. Data-dependency analysis would also likely be used to
assign instances of DOALLS to processors on the basis of least

communication with Extended Memory.

Another means toward meeting the goal of efficient use of FMP
resources is to generate efficient object code. Some of this

efficiency will be derived from classical compilation techniques

(feasible since most of the task involves generating code for

individual processors). Some of the efficiency will come because
of the simplicity of having only one program in execution at a
time.

I
4.2.3.1.4 Support the Operational Environment. The FMP Compiler

would be able to provide the necessary linkages to the logical
input-output subsystem. In addition the compiler would produce

the necessary information for the linkage editor.

Since the proposed FMP organization is very modular and is likely

to be implemented first with a limited number of processors, an

option which must be available with the prototype compiler is to
compile for "N" processors and "M" memories. This capability

should add considerably to the time available for debug and system

integration of the software since not all 512 processors need be

available to begin system testing.
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4.2.3.2 Functional Organization

Figure 4.12 shows the expected functional organization of the FMP

Compiler. The internal interface between all components shown
would be a common representation of the compiled program. Such a

common representation should allow the development of compiler

design and debugging aids. For example, the source generator

module could be used at any phase of compiler execution to

generate a record of the current state of compilation.

4.2.3.3 Domains

The prototype compiler would handle only rectangular domains. In
addition, the domains would be constrained to a maximum of four

domain variables with constant spacing. These restrictions are

suggested to reduce the prototype compile complexity. The hard-
ware proposed would tolerate any kind of index set as a domain.

Language features have yet to be proposed for describing such non-

rectangular domains.

4.2.3.4 Data Flow Analysis

Data-flow analysis is not required to produce executable code so
the prototype compiler is not expected to have such an analysis

capability. However, the compiler can do a much better job of

optimizing when a data-flow analysis is included. One of the
chief uses of data flow analysis would be to improve memory

allocation decisions. For example, if more structure variables

can be held in processor menlory, the number of EM fetches and
stores would be reduced with a likely improvement in throughput.

4.2.3.5 Memory Allocation

Memory allocation is static in the sense that only one program
occupies the FMP at any given time, and that the same variable in

that program always occupies the same memory address if the same

run is repeated. Allocation is dynamic in the sense that space is
allocated to named common areas only when the first program unit

using them is entered; space is allocated to variables local to a

program unit only then that program unit is entered; and these

spaces are deallocated when the last program unit using these
local variables is exited. Hence, the same physical me,,ory area

may successively be allocated to local variables in a number of

program areas. As mentioned earlier, an option would be available

such that no deallocation of unused memory space would occur.

This option would be useful if data values are carried from one
call of a subroutine to the next.

Program and data areas have no relationship to each other. They

would be separately managed. In fact, separate calls on the same
subroutine from different places may have the local working space

of the subroutine allocated to different places in memory, and the
code file for that subroutine will not have moved.
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4.2.3.6 Subroutine Entry and Return

The subroutine entry and return mechanism would be essentially

that of standard Burroughs machines. This mechanism allows the

deallocation of unused memory space rather than requiring the

space of all subprograms to occupy physical memory addresses even

during the time it is not being used. One of the integer

registers would be use(] as a stack pointer. It points to a

"return control word" (RCW) which contains: a) the memory address

of the R(-_ of the procedure calling this one, b) the program

counter setting to which return should be made, and c) the size of

the memory area required by this program. Upon subroutine entry,

the size field, plus th_ number o£ parameters to be passed, is

added to the stack pointer, a new RCW is built, and written into

memory at the new stack pointer. Upon subroutine return, the

stack pointer and program counter are loaded from the RCW. The

parameters that are passed include the base acidresses of any

shared named common areas, and pointers to any variables or arrays

that are passed by name (in FORTRAN, all explicit parameters are

passed by name. However, there is some implicit passing of

parameters by value, as when calling a mathematical function.)

The result of managing subroutine working space as a stack is that

recursivc _ subroutine calls are allowed, even though there seems to

be no use for them in aero flow and weather codes.

4.2.3.7 Concurrency

In the prototype compiler, the only concurrency allowed will be

that of all the instances of a single DOALL. All instances would

be executing copies of the same code file. Execution sequencing

dependent on which domain element an instance is associated with

could be controlled by testing the instance-variables to determine

which element they represent. Nested DOALLs would have the inner

DOALL implemented as an ordinary DO loop.

The hardware is not constrained to have all processors executing

out of the same code file. Thus, in principle some instances of a

DOALL could have one sequence of code, and other instances could

have some other sequence, but this would not be allowed in the

prototype compiler.

Capabilities for operations in which the processors operate asynch-

ronously with no synchronization are not provided. Neither are

capabilities provided in which a few processors are allowed to

execute code separately from the other processors which are using

the c)ordinator for synchronization.

4.2.3.8 Duplexed Computation Mode

A compiler option planned (but not for the prototype compiler) is

to generate the code and controls to execute each sequence of code

twice but with the spare processor switched between executions.

In this mode, all execution occurs in a different set of proces-

sors on the second pass. The results of the two passes would then

be compared as a confidence test for highly-reliable results.
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4.3 OPERATINGSYSTEM

l

i

i

The NASF should have only one operating system, pieces of which

execute on the various portions of the system. In the discus-

sions below, this operating system is called the Master Control

Prngram (MCP)0 The purpose of the MCP is to provide software

support for the following:

i* Scheduling and controlling the flow of programs and files

to and from various processors in the system (including

the Support Processing S_,stem and the ['MP),

2. Initiating staging of jous onto the FMP,

3. Memory management including storage management and data

management,

4, Support of the FMP FORTRAN programs for functions that

cannot be performed in problem mode because of overall

system implications,

5, Support of other functions of the Support Processor-FMP

interface such as performance monitoring, error logging

and operator control,

6, Support of the external environment including interrupt

handling, I/O handling, peripheral control and data

communicat ions,

7. Providing certain system utilities such as dump, and

system log analyzer,

8. Support of diagnostics and maintenance for all parts of

the system.

The development of a system of this magnitude is a major task.

During the study of the feasibility of the NASF, the MCP con-

sidered was based on the existing MCP on Burroughs 700 series and

800 series systems, in particular the B7800. The MCP of this

system has evolved from systems as early as 1960 and is,

therefore, a mature system which would need no modification to

satisfy many of the above requirements. Recently, Burroughs has

been developing the Burroughs Scientific Processor (BSP) as an

attached processor to the B7800. 'I_ne general philosophies of job

flow and task management in the NASF and BSP are very similar.

The MCP described below is therefore based on some of the design

decisions and experience gained in the BSP project.
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4.3.1 Assum_on___ss

The evaluation of the proposed MCP implementation is based in part

on the assumption that the FMP would be designed to operate most

efficiently on tasks with the following characteristics.

i. Data areas up to the size of the extended memory (34
million words).

2o Long running programss a minimum runtime of at least one

second, a typical runtime of several minutes to several
hours.

3. Batch job oriented: user interaction is not required.

Also, as discussed in Chapter 2, a self-managed file system sup-

ports the basic data management functions. This file system is

assumed to not only provide the necessary data storage and retrie-

val functions, but would also maintain and enforce data ownership
and access control.

4.3.1.1 Computational Envelope

An FMP task, once started, is assumed to run to completion within

the high-performance computational and I/O environment o[ the FMP

without requiring intervention of or access to the support process-
or or any of its I/O devices. The computational envelope is the

high-performance environment. In particulars

i. All FMP program and data files are assumed to be fully

contained within DBM while the program is in operation.
All files holding the necessazy input are ass_ned to be

within the Data Base Memory (DBM) before the task is
started.

2. Each FMP program is self-contained as far as resources

are concerned. No dependencies on Support Processor
actions shall occur during the runtime of the program.

Therefore, no Gperator or user interaction would be

permitted during execution of an FMP program. Operators
and users would be able to query the MCP regarding the

status of the job running on the FMP and would have
normal controls such as cancel or suspend execution.

4.3.2 B7800 MCP

The existing B7800 MCP actually provides more functions than re-

quired for the Support Processor System of the NASF. Only those

sections which are of major importance to the NASF MCP are summar-
ized below.

i
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4.3.2.1 Interrupt Handling

The B7800 style systems being considered for the Support Processor

are all interrupt-driven. The interrupt handling section inter-
faces with all the resource-handling parts of the MCP. Interrupts

are caused by the B7800 CPU by the I/O Processor and by software.

Some of the interrupts processed by the interrupt handler are:

i. Caused by B7800 CPU

a. Interval Timer

b. Presence Bit not set (part of automatic memory

management)
c. Invalid Operand
d. Invalid Index

e. Processor-to-Processor Communications

2. Caused by B7800 I/O Processor

a. Operator Request Pending

b. I/O Complete

c. Data Comm. Processor Ready-To-Send

3. Caused by Software

a. Inter-Task or Intra-Job Communication

4.3 •2.2 Memory Management

Memory management methods supported by the B7800 MCP are designed
for implementation of the "virtual memory" concept within the

B7800. Several methods of memory allocation are supported on the
B7800. These methods include Ill]:

i. On demand

2. Working set
3. SWAPPER

All methods use disk as the backup storage device.

4.3.2.3 MCP I/O Handling

Since the MCP is involved in all I/O to and from devices attached

to the B7800, the MCP I/O handling functions are re-entrant code

shared by all tasks running in the B7800 system. These I/O pro-

cedures perform the following functions:

i. Build tile control words necessary to do a physical I/O

operation

2. Send I/O instructions
3. Wait for an I/O operation to complete

4. Notify the associated program to continue

5. Handle physical I/O errors

a. Retry where possible
b. Enter user error routine if declared, or

c. Discontinue the program

4-55



4.3.2.4 Process Control

The job selection process within the B7800 MCP considers the

priority declared by the user, the time the process has been wait-
ing, and the "class" (or system-level priority) of the task. The

process control section supports the following functions in the
B7800.

i. Inititation of tasks required by the user or by the MCP

2. Task scheduling
3. Perform "EC_/EOJ" duties such as deallocatlon and

bookkeeping at End of Task or Job

4. Make administrative log entries

4.3.2.5 Peripheral Control

Peripheral Control procedures of the MCP are responsible for all

peripheral devices on the B7800, except disk. These procedures
perform the following functions:

i. Locate input data files

2. Assign output devices based on availability
3. Maintain and update table of all available units

4. Handle I/O parity recovery such as tape parity and card
reader errors

5. Maintains system-level status such as ready, repair,...
for all physical units including processors, memories and

peripheral devices.

4.3.2.6 Work Flow Management

The processing of the tasks within a users job is specified

through use of an easy-to-use, high-level work flow control
language called WFL [12]. The work flow management software on

the B7800 consists of a controller (which handles most keyboard

input messages and places control records into a Job Description
File), a WFLCOMPILER (which generates object code for presentation

to the Process Control Section based on jobs in the Job

Description File) and a job formatter (which selectively prints

summacy information about the job on the Job Summary sheets).

Most operator keyboard messages are handled through the controller
portion mentioned above.

4.3.2.7 Data Communications

The data communications section of the B7800 MCP is called the

Data Communications Controller (DCC). The functions of the DCC
include:

I. Allocation and deallocation of Data Communications Queues

which are the interface mechanism between object pro-
grams, system routines such as the editors, and tile DCC.
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3. Dynamic reconf igurat ion of the Data Communications

Subsystem

4. Generation and Maintenance of tables used by the Data
Communications Processors

A system called NDL (Network Definition Language) [14] provides a
user-oriented means of specifying network and terminal

characteristics as well as what processing must be performed

during I/O to match the terminal or network characteristics to the

standard forms processed in the system.

4.3.3 Integrat}o,_! of FM___PPTask Management into MCP

FMP programs would exist as tasks within the standard WFL (Work
Flow Language job structure of the B7800. The B7800 portion of

the MCP schedules the FMP task to be staged into the FMP. Once
such a task is initiated, it would run wholly within the

computational envelope without any further B7800 dependence until

the task terminates. The B7800 portion of the MCP may,

optionally, query the status of FMP tasks, or overrid_ the FMP
task-selection decisions.

4.3.3.1 Limitations

Some functions traditionally associated with operating systems are

not provided on the FMP even though they are a normal part of the

B7800 itself. Specifically:

i. FMP FORTRAN is the only language provided.

2. Interactive programs are not supported.
3. No provision, other than direct I/O, will be made for

programs whose total file sizes exceed memory capacity.
4. Delays due to waiting for operator intervention on behalf

of executing FMP programs would be eliminated.

The data base sizes expected are very large. If a job m_x with a

large number of very short jobs with large data bases is encoun-

tered, the file system and paths to and from the DBM would become
a bottleneck. If this occurs, efficient utilization of the FMP

would become difficult.

4.3.3.2 Interrupt Handling

The if_terrupt handling section of the existing MCP would be modi-

fied o include those interrupts caused by the FMP. The major

interrupts from the FMP would be "Task Complete" and "Error State

Pending". Task Complete would be a normal FMP task completion
report. This response would be passed on to the Work Flow Manage-

ment section to determine what task to process next. The Error

State Pending would be the report of an abnormal te[mination.
Status information would have to be scanned out of the FMp to

determine whether the problem is user-related (such as overflow)
or hardware related (such as a failure in that portion of the

systell which is not automatically corrected).
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4.3.3.3 MemoryManagement

No changewould be madeto the B7800MemoryManagementsection of
the MCP. However, input data and programstaging would have to be
initiated by the B7800MCPfor FMPdestined jobs. Only the re-
quests need to be made. The File System actually performs the
function.

4.3.3.4 Process Control

The process control section of the B7800MCPwould be extended to
support the scheduling and initiation of tasks on the FMP. The
process control section would also maintain FMP log entries and

statistics with respect to workload, job lengths, etc.

4.3.3.5 Work Flow Management

Extensions in the B7800 WFL (Work Flow Language) would prnvide the

following functions:

1. Invoke the FMP FORTRAN compiler and linker.

2. Specify FMP resource requirements for scheduling and
allocation purposes (such as the amount of DBM buffer

area required during FMP task exectuion).

3. Specify job restart point following failure of any
portion of the system.

In addition, the existing work flow management functions which

support operator control of jobs and tasks in the system would be
extended to include tasks running on the FMP. These extensions

would include static controls to give visibility of the status of

a task either queued or active on the FMP. In addition, the exten-
sions would provide means for an operator to alter the priorities

of tasks queued for service and even to force a roll-out of an

active task (for later resumption). Such a roll-out would

normally be only to the Data vase Memory.

4.3.3.6 Utilities

Various utilities specifically oriented to the support of FMP

operations would be developed. These utilities woutd include
various "analyzer" utilities to edit and format dumps.

4.3.4 FMP Portion of MCP

A portion of the NASF MCP would be resident in the FMP. In partic-
ular, the coordinator is the part of the FMP which would execute

the FMP portion of the MCP. The functions provided would include:

i. Interface to the Suport Processor for FMP initiatization,

operator control, task forwarding, checkpoint/restart,

dumps, etc.

2. Schedule and initiate tasks on the FMP from among those
forwarded from the Support Processor. Provide wrap-up
for normal and abnormal termination.
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Establish connection between an active program executing

on the FMP and the appropriate files in the Data Base

Memory.

Service FMP interrupts such as invalid operand or errors.

Provide the appropriate run-time environment for FMP

FORTRAN execution. This environment would include the

appropriate intrinsics plus mechanizations of time, date,

PAUSE and dump. The run-time environment would also

support code overlay mechanisms, space allocation, and job

roll-in and roll-out.

4.3.5 File Management

An independent file manager provides transparent management of all

files on archive, disk, and in the Data Base Memory (DBM). This

file manager is accessible f£om the FMP, the Support Processor,

and the Users. Thus, the file management system will have capabil-

ities exceeding those required only to support FMP execution.

One of the functions of the file management system will be to

accept commands designating movement of or copying of files from

one place to another. These commands would be utilized to init-

iate the movement of programs and input data to the Data Base

Memory as needed for FMP execution.

The Data Base Memory, and its controller, are considered part of

the File System portion of the NASF although the sole purpose of

the DBM is as a staging memory of FMP jobs and data. Since the

DBM is part of the File System and since the File System provides

data and storage allocation capabilities, the portion of the MCP

on the FMP does not require any filemanagement capabilities.

Another of the functions of the DBM will be to allow certain

functions to be externally enabled. The best example of this

capability would be a request to the File System by the Work Flow

Management portion of the MCP (executing on the Support Processor)

to cause the movement of result files of a particular FMP job back

to the active files from the DBM. This request could be made

contingent on a message from the FMP portion of the MCP to the DBM

controller that che result files are closed and can be released.

Other functions to be provided by ':he file management system will

include:

i. Dynamic allocation and deallocation of space as required.

2. Establishment and maintenance of directories or other

techniques to map external requests (which will be in

terms of the "name" of a file) to the appropriate physical

storage area.

3. Backup and archiving of files based on specified condi-

tions or time intervals.

4. File Security functions which would allow user control

over which programs and/or users would be allowed to read

and/or update their files.
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4.3.5.1 FMP Interaction with File Subsystem

Since the file system is self-managed, all references to data

within the file syFtem would be by name of the data rather than by

direct reference to its physical position. FMP interaction with

the file system occurs at two levels of the system. First, the
coordinator provides the high-level interface to the file system,

in particular to the Data Base Memory Controller. Second, the

Data Base Memory is part of the File System, and as such has an
operational interface to the File System Manager and the rest of

the file system.

The operational interface between the DBM and the rest of the File

System provides the required data paths as well as control paths
to support:

i. movement of files within the file system
2. storage allocation

3. security functions

The interface between the coordinator and the DBM has basically

the same functions as interfaces between the file system and other
NASF subsystems such as the Support Processor and the Users.

Allocation of space within the Data Base Memory is cont_olled by
the File System, not by application programs. The DBM maintains a

table to convert file names into DBM addresses. Thus, the files

referenced by the coordinator are referenced by name rather than
by physical location.

Control of the files within the DBM follows the philosophy of the

rest of the file system. Once a particular file has been opened
by an external request, that file is frozen as far as allocation

is concerned and remains resident (for example in the DBM where
coordinator requests are concerned) until closed. The coordinator

would have the capability of initiating a transfer from DBM to EM
very similar to a DMA (Direct Memory Access). Such a transfer

identifies the name of the file in the DBM and the length and
physical location of the EM area reserved for the transfer.

Operation over this interface can be summarized as follows. When

an FMP task has been requested (in the Support Processor), the Sup-
port Processor passes the names of the files needed to start the

task to the file system. In addition, the FMP portion of the MCP

is notified of the expected arrivals and an entry would be made on

a queue of "pending" job requests. In the meantime, the file
system would be busy transferring the requested files to the DBM.

When the job currently executing on the FMP completes and its

files are closed, the file system begins transferring those files
back to the bulk storage regions. At this time, the coordin-

ator, under control of the pending task list, takes those steps
needed to initiate execution of the next task for which all re-

quired files are resident in the DBM. This task scheduling re-

quires that the status of the file loading into the DBM be avail-
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able to the coordinator. To begin the startup of a job, the co-

ordinator would then open the program code file and request that

it be transferred to some specific area of the EM. Other files

used for standard system monitoring would be opened at the same

time. The FMP task would begin execution after the coo_:dinator

completed broadcast of the code files to the processors.

Not all files would wait to the end of an FMP run to be unloaded

from the FMP. The Support Processor would be able to specify the

destination of expected DBM output files prior to completion of

FMP task execution. The file system would then provide automatic

staging out of the DBM once the file of interest is closed. More

discussion related to this area can be found in Section 5.9 (DBM

Controller).

4.3.6 Job Structure

A job is the only unit of work in the NASF. The job is itself a

very simple program which invokes and determines the relative

sequence of a set of programs. _lese programs constitute a set of

logically related tasks which perform some data transformation on

files. A job is written in FMP Work Flow Language (WFL) and it

runs on the Support Processor (B7800). FMP WFL contins B7800

standard WFL as a proper subset, so any existing B7800 (or B7700)

job can run unmodified on the NASF. The WFL commands are either

simple action commands (RUN, COMPILE) or tests of conditions (IF

SUCCESSFUL-COMPILE THEN...).

4.3.6.1 Organization of a Job

The basic outline of a typical job is constrained by the computa-

tional envelope and LINKER concepts (see Section 4.3.7). The

typical job will contain, in sequence:

i. None, one or more FMP FORTRAN compilations

2. If there is a compilation, a LINKER task

3. Specification of necessary input files for FMP program

4. One or more executions of FMP programs

In addition, any number of B7800 tasks may be interspersed with

the above, such as to generate input files, or to process output

files.
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4.3.6.2 Flow of Job

Figure 4.13 shows a general view of the flow efa job in the NASF.

A job enters at the upper left (BOJ=Beginning of Job). First the

job itself, the Work Flow Language, must be analyzed so the job is
scheduled and finally analyzed on the CPU. The result is a

JOBFILE which controls the sequencing of the rest of the tasks in

the job. If FORTRAN compilations and LINKER tasks are requested,

control remains on the left of the figure. When an FMP task is

specified, that request together with the identification of any

files needed is passed to the File System (upper right of figure).
Once all the files have been staged into the DBM, the task is plac-

ed READY for FMP execution (lower right of figure). Once the FMP

task is complete, the Support Processor is notified so that the

next task specified in the Work Flow can be specified. When all
tasks are complete, the job terminates (EOJ-End of Job-at lower

left of figure).

'NEED_
CORE-
QUEUE

BOJ

GET SPACE 1

-- READY
QUEUE

CPU

I IPROCESSINGI

END
SPS TASK

/--__;'NEEDS

\ I -- DBM SPACE'

\ / -----
\ / IF,LEi

START END COORD,
FMP FMP INT
TASK TASK

EOJ

Figure 4.13 NASF Job Flow Diagram
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4.3.7 Program Load an_dd Overla_ Su_rt

The FMP evaluated would run only one program at a time. No addi-

tional program or data area may be preloaded into the EM or pro-

cessor memories. Although preloading might minimize setup delays

when starting the next task, additional hardware would be required

to support the desired level of security. The Data Base Memory

and its controller allow preloading of programs and data. Secu-

rity can be better maintained at this level since all references

to data in the DBM is by descriptor (or name).

The LINKER accepts object code files from one or more separate

FORTRAN compilations and produces a single load code file, called

the loadfile. In the process, the LINKER asszgns memory locations

to all program instructions and resolves or relocates address

references accordingly.

For the case that the program memory part of the user program is

too Large (i.e. would not fit within the processor memory), the

LINKER supports an overlay facility. With this mechanism, the

user may divide a program into multiple phases and then may

specify which phases share the same memory locations.

For the case that the data part of the user program is too large,

the user may use the direct I/O facilities to and from files in

the DBM. Automatic virtual memory mechanisms were not suggested

for t_lis system since the applications considered during the study

did r,ot require such mechanisms. If a significantly different

workload and application for the system is expected (than the

applications studied), the cost-benefit tradeoffs should be re-

evalu;_ted.

Data is either initialized, uninitialized, or initialized to

"invalid". Initialized segments have their initial contents

present in DBM as generated by the Compiler/Linker. Uninitialized

segme_ts and segments to be initialized to "invalid" are not

present on the DBM. In this case, storage is initialized by the

execution of approprate FMP code.

4.3.8 Operations Support

4.3.8.1 Performance Monitoring

Certa n information will be monitored during NASF operations,

colle,:ted, and reported as part of the system log. Some of this

information is accumulated by the B7800 as part of normal monitor-

ing in the existing MCP. Other information would be collected by

the FMP portion of the MCP. Some of the information that may be

included in such monitoring is:
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i. Interval timer reading at the time of the report

2. Real time clock at time of the report

3. Count of CN-using instructions
4. Some measure (to be determined) of the processor idle

time

5. A measure of the time that the coordinator only is busy

(i.e. all processors idle)
6. Count of succcessful errer corrections

7. For each error correction, the address and the observed

pattern
8. Time spent in specifiu subroutines
9. Others to be determined

The interval timer in the coordinator would 9e coordinated with

the Support Processor at the beainning of a run.

Other monitoring in the FMP would be task related. Beginning-of-
Task and End-of-Task of FMP tasks, OPEN and CLOSE of DBM files,

and traffic to and from the DBM would be logged. Operator console

system status display would be extended to include FMP tasks.

4.3.8.2 System Initialization

FMP initialization is that process whereby the FMP is transformed

from an indefinite (i.e. any arbitrary) state into a state in

which it normally processes user programs. This process reinitial-
izes all parts of the system. Conceptually, the initialization

process corresponds to a coldstart where not only is the MCP

loaded, but all tables, directories, etc. are initialized.

Initially, no process corresponding to a "coolstart" (where the

disk directory is saved) or to a "halt load" (where jobs are
restarted from the last inactive point) will be implemented. Re-

start in the face of failures needs to be carefully studied since

there seems to be a number of natural points at which execution
could resume after a failure without having to reinitialize. In

particular, while executing all the instances of a DOALL, if one

processor failed, only those instances assigned to that processor
would have to be recomputed in the spare processor. Since the
ENDDO would have occured without successful completion of all

instances, the old values from the start of the DOALL would still
be available. Careful analysis of this sort of a circumstance may

show other "natural" retry points in the system.

Initialization of the FMP itself consists of the following steps:

i. The driver program (executing on the Support Processor)
determines that the B7800 - FMP connection is operation-

al. This connection is a low bandwidth connection via the

Diagnostic Controller (DC) part of the FMP and the Data
Comm Controller on the B7800.

2. The driver transfers the FMP portion of the _ICP to the
coordinator via the DC. The coordinator then begins

execution of its part of the MCP.



3. An initialization phase of the FMP MCP will perform

various initialization functions, including confidence

tests.

4. The MCP will then complete its initialization and inform

the Support Processor.

The FMP is then ready to process programs.

4.4 OTHER SOFTWARE REQUIREMENTS

Although the FMP FORTRAN language and compiler, and the NASF

Master Control Program (MCP) are the key elements of the NASF, a

number of other software capabilities and requirements exist.

These capabilities and requirements might be classified as those

which are supportive to the language and MCP developments and as

those which may provide more general utility of the system.

To support the language, software development cannot stop with the

compiler (both a prototype version and a more final version). In

addition, a system development language must be identified to

support the development of the operational environment. Input-

Output Formatting routines would need to be developed, especially

if a final review of the impact of various system scenarios show

that the Support Processor would then be the appropriate system

resource to provide all I/O support. The program library and

overlay facilities that may be desirable would be supported by a

LINKER or BINDER.

Those jobs in execution on the NASF will need to be able to util-

ize various int[insics, some of which will be resident on the FMP.

These intrinsics would include FMP task initialization (including

EM and PM loading), run-time execution monitoring, and mathe-

matical intrinsics.

Some of the simulation support that would be needed in the develop-

ment of the NASF could be based on work done as part of this

study. Simulators at various levels would be utilized, including:

NASF block-level simulation

FMP simul_tion for timing estimates

Functional simulators for early code development support

Another important area of software would be the systems developed

to support the diagnostics and maintenance of the NASF (which are

discussed in more detail in Chapter 6). These software tools

would include:

Off-line FMP diagnostics which would be initiated by the

Support Processor and exercise the FMP when no jobs were

active.

On-line processor diagnostics to be used both as part of the

off-line FMP diagnostics above and as a means of testing the

spare processors when not actively assigned to user problems.

I,

4-65

• r



Automatically managed FMP confidence tests

Diagnostic generation tools to be available both during

development and initial test of the system, and also as a tool

to allow the Field Engineer to produce new tests as required.

All standard diagnostics and maintenance tools provided as

part of any standard equipment included in the NASF.

Tester Software

In addition to the above capabilities, most of which must be

developed specifically for the NASF, software already exists for

that portion o£ the system which may be implemented with standard

products. For the B7800 Support Processor, a complete set of

languages, utilities, and application packages exist including:

ALGOL

PL/I
FORTRAN

COBOL

BINDER (linker)

CANDE (a text editor)

WORK FLOW MANAGEMENT (operating system)

NETWORK DEFINITION LANGUAGE (for communications control)

4.5 CONCLUSIONS

The implementation of a system such as the NASF is a major under-

taking. However, the software portion of the system studied is a

realistic task to approach since it can be based in large part on

existing software. The major part of the operating system exists,

including the techniques to control an "attached proces_or" with a

computational envelope supporting one user at a time.

The language extensions would be straight forward to implement.

Since the extensions are strongly biased to description of the

problems rather than explicit mapping to the hardware and since

the architecture reflects the structure of the problems, the nec-

essary flexibility exists to allow growth and improved efficiency

over the future of the NASF.
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CHAPTER 5

FLOW MODEL PROCESSOR (FMP) HARDWARE

t

5.1 INTRODUCTION

This chapter contains the results of the past year's study with

respect to the design of the Flow Model Processor (FMP) hardware.
In significant areas, the FMP design presented here is substan-

tially more flexible and more general purpose than the FMP design
of Ref. i. Whereas that FMP was tailored to be efficient on

programs that could be vectorized, with some extention to the case
where the data did not form vectors, the current FMP performs

essentially just as efficiently whether the data can be arranged
in the form of vectors or not. In the present FMP, the 512 pro-

cessors can work together efficiently as a vector machine; they

can be just as efficient when working as 512 independent scalar

processors.

The FMP is capable of execution in a manner similar to lock-step
array machines such as ILLIAC IV or the Burroughs Scientific

Processor (BSP). Simple programs (a copy resident in each

processor), with no data-dependent branching, will produce this
result. The FMP is not limited to this mode of execution however.

It is also capable of performing in the manner of conventional

multiprocessors. Interprocessor synchronization is implemented

via special commands and use of the shared memory (Extended

Memory).

It is expected that the multiprocessor capabilities of the FMP
would be used on array-oriented problems. In particular, all

processors are cooperating on the same job, with each processor

independently executing some small portion of the job. In this
mode of execution it becomes important to have as small a time

penalty as possible when synchronization of the processo:s is

required. The coordinator gives the FMP the ability tc do

array-wide synchronizations in one instruction.

The result is an architecture that is much more flexible than the

current generation of high-performance processors, in that there

is no requirement to vectorize the algorithm. It is also easy to

put a great many processors to work on a single algorithm because
of the degree of interprocessor cooperation available through the

coordinator and the common Extended Memory. Although the aero flow

codes are dominated by vectorizable algorithms, there are por-
tions, such as subroutine CHARAC in the explicit aero code, where

the data dependency is different from processor to processor, and

the independent execution of each processor simplifies matters

greatly. The radiation and physics computations of the weather

codes use the independence of the processors to an even greater
extent.
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Some of the more important design considerations are dlscusse4 in

the following subsection. The sections following in this chapter

review the FMF architecture, briefly llst the system parameters

and describe eech of the major elements of the FMP in turn.

5.1.I Design constraints and Considerations

During the course of major hardware development project, such as

the FMP, consideration of and compromise between many (sometimes

conflicting) requirements must be made. Some of the important

considerations on this project (throughput, economy,
hardware/software compatibility, snd schedule) are discussed

briefly below.

/

<,

i

i

5.1.1.1 Throughput

One major compromise in the design of any processor is between

processor performance and its cost. In this project, the point of

maximum performance per unit of cost is identified on the cost vs.
performance curve for a single processor. Enough of those

processors are built to deliver the required throughput. This
approach contributes to maximizing performance v_ cost for the FMP
as a whole. The above evaluations result in the choice of

high-speed ECL and implementation on large boards.

5.1.1.2 Economy

Although those sections of programs which are vectorizable can be

conceptually implemented on a processor that enforces lock-step

cooperation among all the processors, the hardware required to
enforce such lock-step operation is almost missing from the FMP.

Each processor is self-contained, with as rudimentary connection
to the rest of the machine as the problem requirements will allow.

The MIMD* construction of the machine also simplifies the soft-

ware, both in terms of system software as well as for application

Drogram development.

5.1.1.3 Hardware/Software Compatibility

The overall economy of a system is directly affected by the

hardware support of software requirements. In some cases specific

hardware features may be required to reduce software costs. On
the other hand, when hardware features are not required, system

costs could be reduced by not providing these features. Some

specific considerations on this project include:

(i) The FMP has only one user program resident on it at any

one time.

(2) Data addresses are independent of code locations. Some

degree of dynamic run-time data allocation is done. For

*Mul£iple Instruc£ion Stream, Multiple Data
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example, space local to a subprogram is allocated upon entry

to that subprogram, and released upon exit, using a stack

mechanism for allocating space. Space is allocated to a
named common only upon entry to the first program unit

naming that common, and is deallocated upon exit from the

last. Integer registers are used as stack pointer, and as

polnte_s to named common areas. Many machines of the older
generation allocate space permanently, even during those

periods that the FORTRAN 77 specification declares them to
be undefined. In the present case, that will reduce the

size of the problem that can be handled. For e_ample, in
the implicit aero flow code BTRID is a large named common in

subroutine BTRI, and subroutine SMuOTH has arrays SS and CT.

These do not exist concurrently, so processor memory can be
devoted to BTRTD during the execution of BTRI and to SS and

CT during SMOOTH. If space had to be allocated for both of

these all the time, the largest allowable BTRID would be

substantially smaller.

(3) Automatic stack pushing and popping on subroutine entry and exit.

(4) A full set of interrupts both at the processor level and
the coordinator level.

(5) Requests to the Data Base Memory controller, for data in

Data Base Memory, carry the name of the file involved, not
its address.

5.1.1.4 Schedule

Historically, every two years worth of technological development
has [esulted in the delivery of computers that are about three

times more powerful for the same cost. Thus, adding an unneces-

sary year between the design freeze and the delivery of a computer

amounts to using technology that is one additional year toward
obscolescence, and has a penalty of a factor of 3% in computa-

tional horsepower. This trend has slowed recently. Even so, it

is important to use straightforward, low-rlsk designs to achieve

timely delivery.

5.2 FMP ARCHITECTURE

Figure 5.1 shows general organization of the FMP.
elements are:

The major

(i) 512 Processors, each containing a scalar execution unit

and storage for data and program,
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Figure 5.1 General Organization of FMP
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(2) Connection Network used to interconnect processors and

the Extended Memory,

(3) 521 Extended Memory modules, whic], hold the main data

base of the program,

(4) Data Base Memory, used as a staging area for jobs to be

scheduled and as a high-speed input/output buffer for

jobs in execution,

(5) Coordinator, used to synchronize the processors, to
interface to the Support Processor, and to run

diagnostics, and

(6) Diagnostic Controller, which allows direct control of

fault isolation in the FMP from the support Processor.

Each processor is self-contained, with integer and floating-point
arithmetic units, its own instruction decoder, its own program

and data memory. Four extra processors are included as on line

spares to help achieve system availability requirements. In

addition, four extra Extended Memory modules are included as on

line spares, again to help achieve system availability

requirements.

5.2.1 General Flow Through FMP

During normal operation, all data and program for the next run
will be loaded into data base memory (DBM) prior to the beginning

of the run. The DBM loading is initiated by the scheduler in the

Support Processor via the File System Controller (these NASF

system elements are described in Chapter 7). The scheduler
initiates a run on the FMP through interaction with the

coordinator (CR).

When the run starts, software in the coordinator initiates the

transfer of code files from the DBM to the Extended Memory (EM).
From there the coordinator causes its code files to be loaded in

its memory and causes the Processor code files to be broadcast to

each Processor. The initialization phase of the program (in the
coordinator) then transfers necessary data to EM. These actions

are automatically inserted by the ctmpiler and the linker. With

data in place in extended memory, and allocated space optionally
initialized to "invalid", and with code files in place in

coordinator and processors, user execution starts.

When user execution is in progress, the coordinator serves as a

high-level "instruction sequencer". Processor tasks are

explicitly initiated and when all processors complete their tasks

(by indicating "I got here"), the coordinator causes the next task
to be initiated in its sequence.
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5.2.2 Changes from Baseline System

The Baseline System of the preliminary study (see Ref. 1 and Ref.

2) had the same basic organization as the system shown in Figure

5.1. The major difference is in the type of connection between

the processors and the extended memory and in the system
implications of that connection.

The Baseline System proposed use of a "Transposition Network"

which allowed flexible access of vectors and array components from

the Extended Memory. The "price" of this vector-fetching
capability was that the processors had to be synchronized at each

Extended Memory fetch time (accomplished by the Control Unit).

The modifications proposed during present feasibility study were

to relax the need for coordination to only the start and end of
concurrent, independent code sections. To accomplish this, an

alternative scheme to interconnect the processors and memories was
proposed which is called the Connection Network (CN). The

reduction in synchronization requirements had the side-effect of

greatly simplifying coordination tasks. These simplified tasks are
handled by a unit now called the Coordinator (CR).

Evaluation of system loading has resulted in some proposed changes
in bandwidth between FMP components. The current bandwidth plans
are summarized on Figure 5.1

5.2.3 Basic System Parameters

No major changes have been made since the preliminary study. The

choice of these parameters was covered in detail in previous

reports (see Ref. 1 and Ref. 2). Following is a summary of the
basic system parameters.

5.2.3.1 Logic Family

ECL is expected to be the preferred logic family. If the final

design were being implemented at this time, Fairchild's 100K

series would be chosen together with compatible memory circuits.

F _al selection of a logic family will be deferred to the

appropriate point in the design cycle in order to gain the most
effective, low-risk components.

Chip counts were made assuming chips projected to be available in

1980. Confidence in this count is supported by the count in a

comparable processor which has been designed using circuit types

available in 1978. See Appendix E of Reference 1 for preliminary
data on this processor.
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5.2.3.2 Clock Rate

The clock has been assigned a 40-nanosecond period. The instruc-
tion times, given in Appendix C are in terms of this clock period.

These times are compatible with the instruction times derived from

the processor design referenced to in Appendix E of Ref. i. using
ECL 100K.

5.2.3.3 Cabling Methods

The same flat belts used successfully in prior projects at

Burroughs for transmitting high-speed signals with fast rise time
and low crosstalk will be used for most of the interunit cables.

Refe)rence 1 discusses this choice.

5.2.3.4 Pcwer

Power and grounding design details are discussed in detail late);
in this chapter. The primary design considerations are:

(i) A small number of centralized power conditioning modules
that accept raw power f) om the mains,

(2) Switching regulators for efficiency

(3) Defense against faults in the incoming power,

(4) Defense against faults in the FMP,

(5) Noise )'educing grounding methods, and

(6) Non-volatility of DBM contents.

5.2.3.5 Number of Processors

A key decision in the design of the FMP will be the choice of the

number of processors to be implemented. Having designed the most
cost-effective processo), then a sufficient numbe_ of them are

linked together to produce the required throughput )ate. Having

done this, and found that 512 processors is the nearest round

number to match the areo flow requirements, performance analysis

lhen confirms that this approach produces a FMP that meets the

aero flow (and weather) requirements. The p) ocessor design
selected is one that matches the 80ns, 16K-bit by one, static RAM

chips that a)e forecast to be available by the time the FMP is
being designed. This is a fairly simple ECL processor, with 40 ns

clock and 120 ns memo)y cycle.

A faster processor might allow the FMP to be built with 256

processors. This requir _s a faster memory, and therefore is

projected to require a smaller (4K-bit), faster (30 ns) memory
chip. The result is a doubling of the number of memory parts

required. The faster processo); is also estimated to requi) e far
more logic parts, with a net inc, ease in parts count. More parts
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implies more failures, and hence a lowered reliability. Fewer
processors, however, means reduced throughput penalty for those
parts of someapplications where concurrency cannot be found, and
hencesomeextension of the spectrumof applications.

Final decisions will be postponed to take maximum advantage of

components available at the time of design. For example, if the

16K-bit chips were faster than here forecast, a faster processor,
but only 256 of them, might be perferred. If 64K-bit chips were

available at the same speed of the 16K-bit chips here forecast,

these would be preferred to the 16K-bit chips, since one would get

twice as much memory with improved reliability due to the reduced

parts count.

In such a case, it is possible that fewer processors would be
needed to obtain the same throughput. When considering the

16-kilobit RAM versus the faster 4-kilobit RAM, the 4-kilobit RAM

chip would require a 4-fold increase in the number of memory
components. In this case, a trade-off between the reliability

impact of a larger number of memory parts and possible recuced

costs from a smaller number of processors seems to indicate that a
more reliable system is the most cost-effective. It takes 512

processors, at 120 ns memory cycle (projected for 80 ns chips) and
40 ns logic clock, to yield the desired throughput of one billion

floating point operations per second.

5.2.4 Modularity

Although the NASF requirements did not specifically address the

problems of system modularity, the FMP design described below

contains a very small number of standard modules. These modules
are the Extended Memory module, the Connection Network switch

module, and the Processor Module. The Processor Module, in turn,
consists of an Execution Unit Module and a Processor Storage

Module. There is also a Data Base Memory Storage Module.

This modularity allows the potential of configuring smaller (or

larger) systems out of the same parts, with no impact on a user's

perception of the system. In addition, such modularity greatly

simplifies the magnitude of the design task for a system of the
required capabilities and should reduce the fabrication costs

since there will be many copies of a small number of parts built.

5.2.5 Preview of FMP Component Descriptions

Following is a brief description of each of the elements of the

FMP together with a formatted tabulation of pertinent features and

a block diagram of each.

For each element of the FMP, there is a table of characteristics

given. A very short narrative description gives the intended
function of the element in user programs. Source of control is

identified, and the storage capabilities, both capacity and speed

are also given. Connectivity to other elements is defined in
detail.
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The table also discusses the modes of error control built into the

design. Most of these mechanisms are discussed in more detail in
Reference I and Reference 2. The chip count is that projected for

a 1980 design. "TBD" means "to be determined".

5.3 PROCESSOR

The array of 512 processors is charged with the task of executing

the use); computations in the program, namely the floating-point

operations on the problem variables.

The processor executes code contained in its own program memory,

and accepts commands from the coordinator. Certain instructions
are executed in synchronism with the coordinator (and hence, by

implication, in synchronism with the entire array, since the

coordinator expects cooperation from all processors.)

The actions of the processor are delineated by the instruction set
detailed in Appendix C. Figure 5.2 shows the division of the

processor into an Execution Unit (EU), a Processor Memory (PM),

and a CN Buffer (CNB). Table 5.1 provides data on the cha-acter-

istics of the processor as a whole.

5.3.1 Execution Unit (EU)

Figure 5.3 is a block diagram of the Execution Unit (the logic

part of the processor) and the CN Buffer, showing the independent

integer and floating point units, with separate register files for

each. Figure 5.4 is a diagram of the instruction fetching and

overlap machinery. Table 5.2 provides data on the Execution Unit.
Connections to the processor come from the control unit and the

Connection Network. The synchronization signals and the 4-bit

wide command path, and its strobe come from the coordinator. The

data paths to and from the connection network are each accompanied

by a strobe. In addition, each processor is connected to

backplane wiring that expresses its own number.

Of the 129 p, ocessors in a cabinet, any one may be the spare

processor. Suppose processor No. N is the spare processor.Then

the backplane number for processors 0 through N-I is correct but
the backplane number for processors N+I th)ough 128 must be shift-

ed down by one, to N through 127, in order that the processors

being used by the program be consecutively numbered. Therefore,

there is a 1-bit signal coming from the spares-designating machin-
ery which tells the processor whether or not to subtract 1 from

its hard-wired processor number to correct for the location of the

spare. Two bits of processor number a,;e the cabinet numbe_ , and
do not enter into the subtraction.

• i
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Table 5-1. Processor Characteristics

Number in System: 512 (No. of on-line spared: 4)

Func t ion

To execute code wr:itten by FMP FORTRAN compile);, with an

upper: limit on speed of over th):ee million floating point

operations per second. The code is executed cooperatively
with other ' processors and with the coo):dinator.

Mode of Operation

Execution of instructions fetched from processors own memory;
execution of commands issued by the coordinator (diagnostics

only); interaction with EM via the CN buffer:.

StOrage .Capac it ies

32,768
120

static RAM

words

ns cycle (odd-even interlace)
technology

Connectivities
No.

To/From Function or Name Signals

CN Addresses and data to EM , 24

data from coord, and EM,

20 ns per; ll-bit frame
Ist frame timed with

120 ns CN clock

CR Commands plus strobe 5 Synch. with 40 ns clock

CR Status bits to coord. 4 Change on any 40 ns clock

CR "go" f)_om coo):d. 1 40ns pulse

Backplane Processor number: I0

Fanout Spare bit and spare 2

designator;

Wi):ed-in levels

D. C. level

Fanout Clocks 2 40ns clock pulse enable

for selecting every 3rd
one for CN clock
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Table 5-1. Processor Characteristics (Cont'd)

Rel iabil ity/Repair abil ity/Tr ustwor thiness

SECDED checker on data bus

Numerous error checks leading to error interrupts

Parity on microprogram memory

For operation in the presence of failures spare processors

can be switched in, or SECDED can be used to cover up
failures in PM or EM.

Physical

Projected chip count:

Size:

Power:

Additional Constraints:

240

1.2" x 11.5" 27.5 (narrow edge to backplane)

325 watts (including 100w losses in the

switching regulator)

Includes own self-contained switching

regulator
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Table 5-2. Execution Unit (portion of processor)
Characteristics

Number in System: 1 per processor

Function

Executes instructions and coordinator commands, accesses
processor memory, and interfaces with CN buffer.

Mode of Operation

Clocked at 40ns clock, which is synchronous throughout entire
system.

Storage Capacities

32 words in addressible registers, a few additoinal
register also

40 ns cycle

ECL technology

Connectivities

No.

To/From Function or Name Signals

PM Data (bidirectional) Ii0 Clocked

PM Address and command 20 Clocked

CN buffer Data (both directions) ii0 Clocked

CN buffer Address path 34 Clocked

CN buffer Controls 5

Fanout Synchronizatoin & status 5

Fanout Commands from coord. 5

Backplane Processor number I0

CN Sparebit 1

Fanout Clocks 2

Fanout Spares designator and

sparebit 2

Comments

ii bits EM no.

23 bits address
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Table 5-2. Execution Unit (portion of processor)
Characterlstlcs (Cont'd)

Reliability/Repairability/Trustworthiness

Contains SECDED checker, microprogram parity,

mentioned under processor

FAiled EU spared out by sparing out entire processor

etc.,

Physical

Projected chip count:

Size:

Power:

I00

About ii" x i0" within processor

125 watts

as
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Error control within the processor includes SECDED on data bus

transfers, parity on words in microprogram memory, and the

assortment of error and bounds checks as listed in the description

of the interrupt register.

5.3.2 Processor Memory (PM[

The Processor Memory (PM) contains data and program within each

processor. Control is from the memory address register in the

processor. There are 32,768 words of 55 bits each consisting of

48 bits of data and 7 bits of single-error correcting, double-

error-detecting code. Data, address, and control connections are

solely to the processor. 16k-bit static RAM chips are used.

Table 5.3 describes major characteristics of the PM.

5.3.3 Connection Network Buffer (CN Buffer)

The CN Buffer accepts address, data, and commands from the EU, and

in response to those commands, may transmit requests for either

store or fetch to a named EM module, may accept data from the CN

and may transmit data to the CN. The CN Buffer accepts commands

from the EU only. The "strobe" or "acknowledge" received from the

EM module via the CN is used as an indication of the success of EM

requests.

Transmissions of data through the CN are synchronized with the CN

clock, a submultiple of the processor clock. All CN buffers are

synchronized to the same CN clock to eliminate time races in the

CN.

Table 5.4 summarizes the characteristics of the CN Buffer. Figure

5.5 shows the shates taken by the CN Buffer controls. The arcs in

the graph of this figure are labelled with the events that cause

change in state. For explanations of mnemonics, see the instruc-

tion set in Appendix C. All eight states in the top of the

diagram are seen as "busy" by the EU. A four flip-flop internal

state register is assumed. The six command lines from the EU

carry different commands plus "go." Three of the requests

(STOREM, LOADEM, and LOCKEM) result in codes being appended to

addresses sent to the EM. In both cases where "go" is shown as

triggering the change of state, an alternative would be for the

"acknowledge" signal, on the 12th line on the data receiving side

of the CN connection, to serve instead.

The 12 lines going from CN Buffer out to CN are ii data lines plus

a strobe that states the data is valid. The 12 lines coming from

CN to CN Buffer are ii data lines plus "acknowledge." Each ll-bit

piece of data is called a "frame". Acknowledge is transmitted by

an EM module upon successfully receiving a request through the CN,

and stays up as long as the connection is to be maintained. The

CN uses the acknowledge to latch up the chosen path, so the

acknowledge is a logic level that stays up during the duration of

the single operation.
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Table 5-3. Processor Memory (PM)

(part of processor; Characteristics

Number in System: 1 per processor

Func t ion

To hold program for execution by the CU, and data to be

fetched in response to that program.

Mode of Operation

Program counter (PCR) and memory address register (MAR)
contains addresses for program and data respectively. The

16k-bit chips assumed by the implementation of choice, allow
the interlace of odd and even modules.

Stor age Capacities

32,768 words
120 ns cycle

NMOS static RAM technology

Connectivities

To/From Function or Name Signals _ Comments

EU address 16 Clocked

EU data ii0 Clocked

EU command 5 Cl oc ked

Reliability/Rep@irability/Trustworthiness

SECDED on all words fetched (SECDED generator/checker is in

the EU)

Detection of illegal instructions, detection of the fetching

of "unitialized" data, detection of fetching of unnormalized

floating point words.

SECDED allows continued operation at reduced reliability in

the face of single bit failures.

Sparing is done by sparing the entire processor.
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Table 5-3. Processor Memory (PM) Characteristics (Cont'd)

Physical

Projected chip count:

Size:

Power:

130

Ii" x i0" board in processor

100w
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Table 5-4. CN Buffer (per processor) Characteristics

Number in System: 1 per processor plus 1 in coordinator

Function

To serve as an asynchronous interface with the CN, decoupling

the program running in the PR (or the coordinator) from the

access delays of EM and the CN.

Mode of Operation

Three registers hold EM number plus operation code, EM
address within module, and one word of data. EM number

serves as a request for an EM, when transmitted through the

CN. The address register is loaded by the CR, and sent to

the EM module at the appropriate time. The data word has
bidirectional connections both to CR and CN.

Storage Capacities

1 words

40 ns cycle

Connectivities

To_/From Function or Name Signals

CN Data path (bidirectional) 24

EU Data (bidirectional) Ii0

EU EM module no. and EM co 14
command

EU Address within module 22

EU Misc. controls 9

Fanout "busy" 1

Rel ia b il its{/Repa ir abil ity/Tr ustwor th iness

20 ns per frame

120 ns CN clock for

initiations

40 ns clock

40 ns clock

40 ns clock

All data passing through the CN buffer is checked at desinta-

tion for proper SECDED code

Sparing is with the processor of which the CN buffer is a

part.

5-20



I

Physical

Table 5-4. CN Buffer Characteristics (Cont'd)

Projected chip count: 30 chips

Size: NA

Power: NA
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The CN Buffer also contains the capability of remapping from an EM

module number of an EM module which has been spared out, to a

different EM module number. There are 528 backplane slots for EM

modules in the system, since all four EM cabinets are fabricated

alike. This provides for up to seven spares. Howeve);, the

reliability analysis is based on one spare pe_; cabinet, and only

four registers, in each CN Buffer, are planned for designating
which modules are spare A 4 word associative memory, recognizing

any one of four 10 bit EM module numbers, and substituting spare
EM module numbers for them, is a suggested implementation.

5.3.4 Design Rationale and Changes from Preliminary Study

Size of the processor memory was selected on the basis of the

known requirements of the implicit 3-D codes. In the preliminary

study, the requirements were projected to be 16K words of data and

8K words of prog_'am. In this feasibility study, we have determined

that it is less expensive to use a single uniform memory with no

penalty in performance. Therefore, the Processor Memory (PM) now
contains both program and data and is sized at 32K words.

As design progresses, it may become clear that 64 kilobit RAM

chips will have adequate speed for this application. If that is
the case and if the price is only twice the price per chip of the

16 kilobit RAM chips currently planned, then the design would be

setup to use 64 kilobit chips. In this case a 64K word PM would
result giving benefits both in la2;ger storage capacity and higher

reliability (fewer parts). See section 5.2.3.5 for other

discussion.

Another; area of change from the Baseline System (i) was the intro-
duction of the Connection Network Buffer (CN Buffer) just describ-

ed. The design objective of the CN Buffer is to provide an inde-

pendent logic unit to which the CN-related operations can be
passed while the EU prope); continues processing. Waiting fo,; EM
access, or for CN connections, can be done in parallel with other

processing instead of being in series with program execution. It
is included in response to the asynchronous nature of the CN.

5.4 COORDINATOR (CR)

The coordinator serves two functions. The first is to serve as

the focal point for array-wide synchronizations and array-wide

cooperation. To this end, the coordinator; is supplied with an

array-wide synchronization mechanism, namely the "all processors

ready", "go", "any processor enabled", "any processor in inte_ upt
mode", and so on, as well as an access port to the CN which, in

combination with processor cooperation, allows the passing of a

single piece of data from coordinator o, f_om one EM module to all

processors, or from all processors, combined into a single wo) d to
the coordinator.
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During diagnostics and initialization, the a,'ray-wide cooperation
is imposedon the p)'ocessors by the coordinator, which has a set
of commandsthat are designed to read and write every accessible
register within the p_;ocessor, and generally to exercise any

intraprocessor activity.

The second coordinator function is to run system software,

interface with the support processor, and with the DBM controller
for DBM-EM transfers, and also to be exercised by the diagnostic

controller. Note that DBM access ):equests from the coordinator

are in terms of file identifiers, not addresses.

The host initiates t):ansfers between file-system and DBM using the

DBM allocation map and issuing I/O commands directly to the DBM
controller. No FMP-resident routine is involved in the initia-

tion or completion of these transfers. The DBM controller resol-

ves any potential conflict between these host transfers and a
coordinator-CR-initiated DBM-EM transfer.

Figure 5.6 shows the Coordinator's two connections to the CN. One
connection is a CN Buffer identical to the CN Buffer of the

processor, and is used to access EM. The other connection is

logically a memory port, and is used for injecting data to be

broadcast to all processors, or for accepting data that has been

harvested in parallel from all processors.

The Coordinator can be controlled by commands from the host

(Support Processor) computes issued via the Diagnostic Controller.

This interface is used to suppo);t the necessasy interaction

between the portions of the FMP Ope)ating System resident in the

Support Processor and in the Coordinator. In addition, the Support
Processor can use this interface to initiate maintenance support

procedures.

The speed of the Coordinator is set by the need to execute system
software fast enough not to hold up uses programming. That is,

the Coordinator needs to be executing system software

substantially less than the processors are processing uses code.

Handcompiled samples show that the Coordinator is almost

completely idle during execution of use) code. It will be )ecom-
mended that system software be allowed to execute along with use)

code, letting "all processors ready" and "processor interrupt"

pull the coordinator back to the user's code as required. It is
also recommended that softwa) e conventions allocate certain

coordinato_ registers for uses program use only, and others for

system prog) am use only, thereby eliminating much of the swap
time.

Figu)e 5.7 shows the block diagram of the Coo) dinato) . Table 5.5
summarizes the characteristics of the Coordinator.
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Table 5.5 Coordinator Characteristics

Number in System: 1

Function

Serves as a focal point for the achievement of array-wide

cooperation of processors; serves as the issuing point of

array-wide diagnostics.

Runs most FMP operating system segments, including inter-

action with host, logging of error events hardware
reconfigurations.

Mode of Operation

Executes program. Interrupt mechanism allows switching back

and forth between the two modes of operation.

Storage Capacities

32 registers (possibly more)

40 ns cycle

ECL register technology

Connectivities

To/From

Host

DBM

EM

Function or Name

I/O channel

Descriptor issuance,
controller status

return

Clock EM via EM

fanout tree

EM
CN

CN

CN

Error interrupts from EM
Control

From CN buffer

to EM-like port

Proc. via

fanout

Proc. via
fanout

Command and strobe

Synch

No.

Signals

TBD

TBD

2

2
24

24

24

TBD

TBD

40 ns Clock pulses

120 ns Select every
3rd as CN clock

with CN clock

20ns per frame; starts

synch with CN clock
same but CN clock at

this port is 60ns off
from CN clock at

CN buffer
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Table 5-5. Coordinator Characteristics (Cont'd)

Rel iabil ity/Repair abil ity/Trustwor thiness

Repertoire of error and _e_onableness checks leading

to error interrupt.

SECDED on data bus checks from coordinator memory, from CN

buffer, and from CN to BDCST and HVST. Available for

checking channels to/from host and DBM controller also.

Diagnostic controller has direct access to coordinator state.

Physical

Projected chip count:

size:

Power:

2,000

20 to 30 large p/c boards

Not estimated
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5.4.1 Execution Logic

The Coordinato_: has a numbe_: of semi-independent execution

stations, so that mo, e than one instruction may be in the p1:ocess

of execution at any given time, just as in the processor. The

degree to which overlap, and its additional logic, are wo;;thwhile,

is a function of the amount of system software that the

coordinator is requi,_ed to execute. Using only the two
ae,'odynamic flow models as benchma, ks tells us that no overlap is

)_equi_'ed. Therefo, e the specification of a mechanism of overlap,

as seen in the instruction listings, is only tenuatlve pending

fu*'ther clarification of the computational lead imposed by systems
programming. The units are:

(I) A,:ithmet ic unit,

(2) Memo3 y,

(3) Inte,'face to Suppo]:t P,'ocesso," and DBM controlle) , and

(4) CN buffer.

Instruction timing is given in Appendix D.

5.4.2 Coo_dinator Memo,_ y

The Coord inato," Memory holds both progJ am and data fo, the

Coordinator. It is addressable only f_'om the Coordinator" and
sends all data into the cent,_al data bus of the Coo_:dinator.

The CooJdinato_ Memo)y is identical in electrical design and uses
the same 16k-bit RAM chips as the processor: memo_:ies. The size

,esulting f_om conside_'ations of the flow-model matching study is

32,768 wo3 ds.

Table 5.6 summa, izes the cha*acte, istics of this memory. Note

that it is identical to the P, ocessor Memol'ies in all respects.
As with PM, whe,'e the processor has a SECDED gene):ator-checker fo,:
all memo, y wo_'ds, so he,'e the coordinator has SECDED also.

5.4.3 Design Rationale and Changes from Pleliminary Study

The change f) om the old vecto)-oriented transposition network of
the p):elimina,'y study to the )andom access connection network of

the design cur)ently described has ,'eleased the p):ocessors from
all requi,'ements on regularity of relationship between the data

processed by one p)'ocesso)" and the data processed by any othe).

We now t)'uly have 512 sepa_ ate scala," p_ocesso,'s in the FMP.

Hence, all desi,'e to have a separate, different, scala) p):ocesso)
associated with the Coo,'dinator has disappeared, and the scalar

p):oc4sso) in the cont)ol unit of Ref. 2 has not been carried ore)'
into the Coordinator.
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Table 5-6. Coordlnato[ Memory (CM) Characteristics

Number in System: 1

Function

To hold program for execution by the coordinator and data to

be fetched in response to that program.

Mode of O_eration

Program counter (PCR) and memory address register (MAR)
contain addresses for program and data respectively. The 16k-

bit chips assumed by the implementation of choice, allow the
interlace of odd and even modules.

Storage Capacities

32,768 words

120 ns cycle

NMOS static RAM technology

Connectivities

To/From Function or Name Signals Tlmin_

Coordinato; add;ess 16 Clocked

Coordinator data Ii0 Clocked

Coordinator command 5 Clocked

Comments

Reliability/Repairability/Trustworthiness

SECDED on all words fetched (SECDED generator/checker is in

the coordinator)

Detection of illegal instructions, detection of the fetching
of "uninitialized" data, detection of fetching of unnormaliz-

ed floating point words.

SECDED allows continued operation at reduced reliability in

the face of single bit failures.

Physical

Projected chip count: 130
Size: ii" x 10" board in CR

Power: 100w
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5.5 PROCESSOR - COORDINATOR INTERACTION

5.5.1 Instruction Streams

The FMP is controlled by two instruction streams, which are

created in parallel by the compiler from a single sequence of

source statements. One instruction stream is being executed in

the Coordinator; the other is being executed Dy all processors

asynchronously of each other. Some statements in the source code
result in instructions in both instruction streams. Some of these

joint instructions require that the Coordinator and the processors

synchronize themselves.

5.5.2 S_nchronization

The simplest synchronization that may occur is the WAIT
instruction, in which the processor sets "I got here". The

coordinator is, or will be, executing a SYNC instruction. The

SYNC instruction waits until "all processors ready" becomes true.

"All processors ready" is the 512-way AND of each processors "I

got here" OR NOT "enabled". That is, it is the N-way AND of the N

enabled processors. After seeing "all processors ready", the
coordinator issues a "go" command, received simultaneously by all

processors, which then reset their "I got here" and execute the
next instruction.

When the processor has raised its "I got here" line, but before it
has received a "go" signal, it is said to be "waiting". The "I

got here" line is dropped upon receipt of the "go" pulse.

A processor is not required to be idle while the "I got here" is

set. Commands are provided to set the flag and to allow

processing to continue. However, each "I got here" is considered a
separate event so if the processor continued execution and wished

to identify another "I got here" event, that command must wait as

required for the flag to be cleared by a "go" command from the
Coordinator.

5.5.3 Interface

Table 5.7 contains a list of Processor-Coordinator Interface

signals and identifies their use.

In addition to the above synchronization, the CR also has the

power to transmit commands. The commands are carried on a
4-bit-wide bus accompanied by a strobe line. Many of these

commands are used in the diagnostic programs. Some of these

commands are conditional on the "enable" bit of the processor,
some are unconditional independent of the enable bit. No such

command is used in user-generated FORTRAN programs, after initial

program loading.
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Table 5-7. Processor-Coordinator Interface

Processor
To or From

Processor Coordinator

"enabled" from

"I got here" from

"Go" to

"Interrupt coordinatoz" from

"Interrupt mode"

"sparebit" to

"spare" to

4-bit Command Bus to

from

"any processor enabled" =

512-way OR of "enabled"

"all processors ready" =

512-way AND of ("I got here"
OR NOT "enabled")

"Go" signal to CN buffer

"processor interrupt =

512-way OR of "interrupt
coordinator" (a bit in the

coordinator interrupt

register

"any processor in Interrupt

mode" = 512-way OR of "inter-
rupt mode" (tested by PINT
instruction

Designation of processor

number of spare procesor

Synchronization and diagnostic
mode command

In addition to the above synchronization, the CR also has the

power to transmit commands. The commands are carried on a 4-bit-

wide bus accompanied by a strobe line. Many of these commands are

used in the diagnostic programs. Some of these commands are con-
ditional on the "enable" bit of the processor, some are uncon-

ditional independent of the enable bit. No such command is used

in user-generated FORTRAN programs, after initial program loading.
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5.5.4 Fan-Out Tree (Coordinator-to-Processors)

A series of fan-out boards are supplied to implement the
Coordinator-to- Processor Interface. Signals and clock fan out

from the Coordinator to the final 516-processor destinations.

From the processors, the signals are combined, so that, within the

Coordinator a single result appears in response to 516 signals

emitted by the processors. For example, the "all processors
ready" signal becomes true at the clock that the last enabled

processor emits "I got here". Another such signal is the
516-input OR of "enabled".

At the processor, some signals are wired per-processor directly to
the last level of fanout board; others are daisy-chained to eight

processors from a single signal pin on the last board. The fanout

boards are pin-limited. Simple buffers with one input pin and one

output pin per signal dominate the circuit count, so hex buffers,
easily available today, will not be improved upon by 1979-1980.

Figure 5.8 shows the Fan-out Tree.
characteristics.

Table 5.8 summarizes the

5.6 EXTENDED MEMORY MODULE

Extended memory (EM) is the "main" memory of the FMP, in that it

holds the data base for the program during program execution.
Temporary variables, or work space, can be held in either EM or

Processor Memory (PM), as appropriate to the problem. All I/O to
and from the FMP is to and from EM via DBM. Control of the EM is

from two sources, the first is instructions transmitted over the

CN, the second is the DBM controller which handles the DBM-EM
transfers.

The Extended Memory consists of 521 on-line modules, and four

spare modules, not used by the working program. Data is allocated
to EM across the modules, with the allocation EM module number =

Address modulo 521 (address is least significant portion) and
address-within-module = address/512.

This addressing mode was chosen as a result of a software

decision. Vectors are an important fetching pattern in the

planned NASF applications (i.e., one vector element to each

processor). It is therefore desirable to design the system so

that vectors of 512 elements will be in 512 separate modules,
reducing memory conflicts and allowing simultaneous access to EM

for all processors. The number 521 is chosen because it is a

prime number larger than the number of processors (512). This

combination then contributes to the above desirable properties.
For a more detailed discussion, see R ef. 1 & Ref. 2.
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Figure 5.8 Processor Coordinator Fanout Tree Block Diagram
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Table 5-8. Fanout (Coo[d-Processor) Characteristics

Number in System: 1

Func t ion

Provide 512-to-i connectivity from processors to coordinator.

Provides i-to-516 connectivity from coordinator to proces-
sors. Provides i-to-129 connectivity from cabinet number to
processors within cabinet.

Modes of Operation

Passive repetition of signals. No registers or program
execution occurs within the fanout tree.

S tot a_e/Capac ities

none words

ns cycle

technology

Connectivities

No.

To/From Function or Names Si@nals

Coord. Synch, status, and command 19
and clock

Timinq

Clocked

Comments

Proc. Synch, status command, 14
clock, and cabinet no.

per processor

Rel lab il it_/Repair abil ity/Tr ustwor thiness

Very low parts count makes additional reliability precautions
unnecessary

Physical

Projected chip count:

Size:

900 (of which 832 are hex buffers of

one sort of another)

36 boards, 4 cabinet boards, 8 row

fanout boards per cabinet
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5.6.1 Basic Characteristics

Each EM module has a storage capacity of 64K words (48 bits data

plus 7 SECDED bits/word).

From each EM module we need a transfer rate and access time consis-

tent with the most economical implementation. An implementation

in 64K-bit dynamic RAM is chosen for availability by 1980. The

low chip count enhances reliability. A 240 ns cycle time of the

memory is projected. Each word carries single-error-correction-

double-error-detection code which is generated at the source

(DBM, CR, or processor) and also checked there, so that transfer

paths are covered by the same error control as the contents of EM.

Figure 5.9 shows the general organization of each EM module. Table

5.9 summarizes the EM characteristics.

5.6.2 Connection Network (CN) Interface from Processors

The commands accepted by the EM module come either from the CN or

from the DBM controller. From the CN, a "strobe" signals the

arrival of a request. The EM module number accompaning the strobe

is matched against the module's own number for error control

purposes. Following the acceptance of the request by the EM, an

"acknowledge" bit is raised by the EM module which locks up the CN

path, and tells the requestor (processor or coordinator) that the

request is being honored.

Following the strobe, and accompanying the address field, will be

any one of four different commands, namely:

(i) STOREM. Data will follow the address; keep up the

acknowledge until the last character of data has

arrived. The timing is fixed; the data item will be

just one word long.

(2) LOADEM. Access memory at the address given, sending the

data back through the CN, meanwhile keeping the

"acknowledge" bit up until the last ii bits frame has

been sent.

(3) LOCKEM. Same as LOADEM except that following the access

of data, a ONE will be written into the least

significant bit of the word. If bit was ZERO, the

pertinent check bits must also be complemented to keep

the SECDED code correct. The old copy is sent back over

the CN.

(4) FETCHEM. Same as LOADEM except that the "acknowledge"

is dropped as soon as possible. The coordinator has

sent this code to imply that it will switch the CN to

broadcast mode for the accessed data. '_he data is then

sent into the CN which has been set to broadcast mode by

the coordinator, and will go to all processors.
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Table 5-9. Extended Memory Module (EM module)
Characteristics

Number in system: 521 (No. of on-line spares: 4)

Function

Serves as main memory for array processor; serves as shared
memory among the processors.

Mode of Operation

Storage Capacities

65,636
240

MOS dynamic RAM

words/module x 55 bits (48 data)

ns cycle

technology

Connectivities

No.

To/From Function or Name Signals Timing

CN Data, Addresses, 24
Commands

20 ns per frame

ist f_ame synch.
to 120 ns clock

DBM cont.
via EM

fanout

Read, Write, to DBM 36 Clocked by CN clock

Rel lab ili ty/Repair abil ity/Tr us twor hiness

All data is covered by SECDED.
are contained in the elements

destination of the data.

The generators and checkers
that are the source and

A parity checker checks parity on the module-number/address/

op-code fields received through the CN.

Physical

Projected chip count:
Size:
Additional constraints:

85 (55 memory chips)
One Ii" x i0" board

Each EM module may be self-con-

tained for power regulation, just

as is the processor, to simplify
power distribution.
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5.6.3 DBM Interface

In addition to the above, there are two commands that result in

cycle-stealing for EM-DBM transfers. These commands and their

addresses come from the DBM controller:

(i) Read from address to one-word buffer, and

(2) Write to address from one-word buffer.

The one-word buffers are loaded from, or unloaded to, the data bus

to DBM under DBM controller control.

A transfer rate of 20 nanoseconds per word (50 million words per

second) is achieved on this bus. Every 20 nanoseconds, the

controls associated with this bus increment EM module number.

Decoding logic for this module number is found in the EM fanout

tree, where it is made conditional on the designation of spare EM

module. The EM address space has 512 words at each EM address to

simplify the address computations within the program. For writing,

the EM modules are cycled after 512 words are loaded into the

1-word buffers, and those EM modules whose buffers are flagged

"full" write, while the nine others do not. For reading, all 521

EM modules are caused to cycle, but only the 512 valid words at

this address-within-module will be transferred to DBM.

Incrementing of module number, for loading or unloading the 1-word

buffers, is done in modulo 521. The address-within module is

broadcast from the DBM controller, and is incremented every 512

words transferred.

5.6.4 EM Fanout

A second fanout tree, similar to that between the coordinator and

the processors, comes from the DBM controller and carries requests

for EM cycles from that controller.

It also carries EM addresses, and the two clock lines to the EM.

Because of the requirement for addresses, this one has

substantially more parts.

From the DBM controller comes address, command, clocks, and timing

for loading or unloading the one-word buffers in the EM module.

From the EM modules comes an "error" signal. Spares designation

is done by controlling processor access, not by switching EM

modules in and out, so no spares designation signals are in this

tree. Figure 5.10 shows the EM Fanout Tree. Table 5.10 summaries

the characteristics of this Fanout Tree.
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5.6.5 Design Rationale

Size of the EM module is in direct response to Ames' statements

about the size of the data base of the aero flow codes they expect

to run on the NASF. Speed of the EM module is derived from

observations about the number of EM accesses necessary to support

a given quantity of floating point operations in the processor.

The range of floating point operations per EM access was observed

to typically lie between 5 and 20 for the aero flow codes. The

resulting EM access times were seen not to impact the running time
of the entire aero flow codes, although some minor sections of

those codes were noticeably slowed by an accessing EM, at the

currently designed speeds.

It should be noted here that advances in semiconductor memory

technology may make it feasible to consider use of 256-kilobit

chips instead of the current 64-kilobit chips. Also in the
future, 64-kilobit chips can be expected to be reasonably faster

than the current chips. Therefore, depending on when final design
decisions are made, a tradeoff could be made between the following

options:

(I) 256K words/module x 521 modules (large storage), or

(2) 64K words/module x 521 modules (current size but

faster).

The considerations will be that option (i) would have much larger

on-line storage with no impact on performance projections. Option

(2) assumes existing plans for data storage requirements, but the

faster parts would result in a faster system and increased
throughput (note that here one could consider fewer processors and

lower cost to get the requested throughput).

5.7 CONNECTION NETWORK (PROCESSORS TO EXTENDED MEMORY)

A flexible means of communication between the processors and the

Extended Memory modules is required. In order to achieve a

reasonable compromise between performance and hardware cost, the

connection network is based on the "Omega" network (ref 6) rather
than on the crossbar switch. The resulting network provides a

path from each processor to the EM module selected by that

processor. The network does not have a central, global control.

5-40



' t¢

I •

i

i

i

i

i

t

.oo.°,..To.1 I.-co.T..LL..I

36 REQUIRED
SECOND-LEVEL
FANOUT (gPERCABINET}

.._._ TOTAL 16 X 4 + 2 X 27 = 118 SIGNAL_

I I

Figure 5.10 EM Fanout Tree Block Diagram

5-41



Table 5-10. EM Fanout Characteristics

Number in System: 1

Function

Distribute addresses and commands from DBM controller to EM
modules. Distribute clock from DBM controller to EM modules.

Mode of Operation

Passive logic, no flip-flops, no execution of commands.

Stor a$e Capacities

none words

ns cycle

technology

Connectivities
No.

To/From Function orName Signals

DBM cont. Addresses, control 34

Coord. Clocks 2

EM mod. 16 above 36

Reliability/Repairability/Trustworthiness

Low parts count makes additional reliability precautions un-

necessary in comparison to the reliability of the rest of the
FMP.

Physical

Projected chip count:

Size:

Comments

22 bits of address

per module

1250 (of which 116 are hex buffers of one sort

or another)
36 boards
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The requirements put on the Connection Network are that it have
the immediate response to connectivity requests (tens of nano-

seconds), that it have on the order of NlogN parts, as does the
Omega or the Benes network instead of the N z parts of the crossbar
switch, and that like a crossbar it be able to provide all N paths

simultaneously when the requests for connection are a p-ordered
vector, and that it be able to handle almost all N paths at once,

with only modest delay imposed on a few of the requests, when the

requests do not form a p-ordered vector. All of these can be

accomodated in a design based on the connectivity of the Omega
network as shown in Fig. 5_Ii.

The network has been designed with the added capability of

processor to processor connection and provides transfer paths to
and from the coordinator. Although the path connectivity of the

network cannot be externally controlled, special communications
modes (such as "broadcast") are available under control of the

Coordinator.

The following discussion requires the use of certain definitions,
as follows:

A "p-ordered vector" is a set of requests in which the EM

module number being accessed by processor N is equal to (d +

pN) modulo 521, where d is called the "offset", and p is the
"skip distance". When p is also the distance between

successive addresses, p has also been called the "stride".

"Stride" modulo 521 equals "skip distance."

A "p-q-ordered vector" is defined in Appendix B, as a set of

requests from processors 0 through 511 such that processor

number i is requesting from memory module M i given by M i =

(a + p*i + q*((i-b)DIV k)) modulo 521. In this equation, k
is the length of each piece of vector, p is the skip distance

within each piece, and q is the additional skip distance

between pieces. The constant a is the offset. The constant

b is the amount by which the first piece is short, since the
first piece might be a leftover from some previous fetching

of a p-q-ordered vector. A simple example is shown in

Appendix B.

5.7.1 Functional Descr iption

The Connection Network (CN) has two modes of control. First, in
the normal mode, the CN establishes connections to the Extended

Memory under control of the Processors. Second, the Coordinator
may use the Network for a number of special purposes as described
below.
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Figure 5.Ii 16 x 16 Omega Network
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In the normal mode, a "request" establishes a two-way connection
between requesting processor and the requested EMmodule. The
establishment of the connection is acknowledgedby the EMmodule.
The "acknowledge" is transmitted to the requestor. The release of
the connection is initiated by timing internal to the EM module.

Only one request at a time arrives at a given EM module. The CN,

not the EM module, resolves conflicting requests.

The following states of the connection network are established on
command from the coordinator.

(i) "Broadcast from coordinator". One word of data is

distributed from the coordinator to all processors.

(2) "Harvest to Coordinator". One word of data,

representing the AND or OR or some mixture thereof, of

the words presented by each of the enabled processors,

is received at the Coordinator. Expected to be used by
diagnostics with just one processor enabled.

(3) "Broadcast from EM". The EM module previously

identified by a request from the Coordinator, will have
the data being emitted by it broadcast to all

processors.

(4) "Wraparound at stage n". Each pair of processors whose

number differs by the bit at the nth bit position shall

be connected, and data shall be swapped between them
using the bidirectional path established. Processors

whose port numbers are separated by 2n swap data.

(5) Diagnostic control

(6) "Null". Respond to processor requests normally.

The connection network appears to be a dial-up network with up to

512 callers the processors, possibly dialing at once. There are
512 processor ports, 521 EM module ports, and two coordinator

ports, one of which "looks like" a processor port, and the other

like an EM port. Processor ports, and the coordinator port, are
capable of accepting "requests".

The time required to set up each path is commensurate with the

access time of EM, which in turn is designed to be suitable for

the number of EM accesses observed in the applications studied.
In the CN design described in thi_ section, the minimum time to

set up a connection is 120 ns. This time is achieved for most

cases, including specific cases that are important in the aero
flow and weather code applications studied.
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5.7.2 CN Com_lexit_ Considerations

The basic Omega network provides only one possible path from a

given processor-slde port to an EM-side port. A network of this
sort may experience blockage, especially during periods of heavy

simultaneous usage by all processors. A number of methods were

considered to reduce the probability of blockage and to increase

the effective throughput through the network. Three of these
methods will be summarized below.

The "natural" size (in terms of numbers of ports on each side) is

a power of 2. Since there are 521 + spares + Coordinator connec-
tions on the EM-side, the network can be considered to be a 1024 x
1024 network. This additional size is the first method of

reducing blockage. Half of the processor-side ports are unused

and slightly less than half of the EM-side ports are unused.

Thus, there is immediately a factor of two red:,ction in the
maximum number of requests for service to the network. By

spreading the active elements across all available ports,
potential blockage is further reduced by reducing the total number

of nodes in the network where blockage is physically possible, as

explained in section 5.7.3 below.

The second method, a simple duplexed network, requires

approximately twice the number of parts than the network just
described. In this case, the network is duplexed (i.e., there are

two copies) in order to provide alternate paths. Then requests

that may be blocked on one Omega network may find a path on the
second (which carries only those request blocked on the first

"layer").

The duplexed network contains exactly twice as many 2 x 2 switch
nodes and twice as many node-to-node connections (one set on each

layer). In addition, a small amount of extra routing logic is

needed on the processor- side and a small amount of arbiter logic
is needed on the EM-side of the network.

A third method, a duplexed network with interlayer paths has even

less blockage. In this method the total number of connections in

the network is the same as the second alternative just discussed.

The corresponding pair of 2 x 2 switch nodes (in the two Omega
networks or layers) is replaced by one 4 x 4 switch node. Connec-

tivity is provided between layers at each node, thus greatly
increasing the total number of possible paths from a processor-

side input to an EM-side output. The resulting network appears

the same as the Omega network (Fig. 5.11) but each connection
drawn actually is two independent connections and each node is a 4
x 4 switch rather than a 2 x 2 switch.
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A threefold investigation has gone into the optimization of the
CN. First, a functional simulator was written, in which a variety

of test cases could be generated, and the resulting sets of

reque3ts submitted to the simulated CN to observe the behaviour.

The processors in this simulation had a queue of up to five

requests each. The number of processors making a request could be

varied. There was provision to test 48 different CN design
options.

Second, a statistical evaluator was written, in which the

percentage of conflicts for random permutations on the inputs
could be computed for a variety of different EN design options.

For the CN option that they both handle, namely the single-layer

Omega network, the evaluator and the sin_ulator give identical
results.

Third, an analytical evaluation of the CN behaviour, for

particular CN design options, was carried out. Each of these is

discussed in more detail in the Appendix B and Appendix H.

Either the simply duplexed network, or the duplexed network with

interlayer ports would be acceptable. The latter has the least
blockage, but a somewhat higher parts count. In the evaluations

made, both the simple duplexed network and the duplexed network

with interlayer paths had i00 percent success in fetching vectors
in two of three directions. The simple duplexed network had a

success rate of 7 _ percent in the third, or "hard" direction while

the other, more complex network had a success rate of 87 percent

in this case. (Success rate is defined to be the percentage of

requests which connect immediately to EM-side outputs with no

blockage. The experiments concerned had all processors active.)
In either design, if vectors with preferred skip distances are

presented to the network, 100 percent of the requests are

satisfied immediately. A skip distance of one is always satisfied

i00 percent. Table 5.11 is based on the simple duplexed network.

5.7.3 Processor and EM Connection Mapping

The Connection Network has 1024 ports on the processor side,

numbered from 0 through 1023, and likewise on the EM module side.
Because potential blockage in the network is a function of

destination address and the origin of requests, the allocation of

processors and EM modules to ports of the network becomes an

important concern. The allocation function is called a mapping
function. The mapping function serves to map processor number

onto input port number and EM module number onto output port
number.
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Table 5-11. ConnectionNetwork (CN) Characteristics

Numberin System: 1

Function

To serve as a dial-up network whereby each processor can

access any EM module in a time comparable to the access time
of the EM module. To serve also as a broadcase network where-

in the coordinator or any EM module can broadcast to all

processors. To serve as the converse of broadcasting in

which teh coordinator can harvest a single word from all

processors. To furnish some minimal processor-to-processor
communication.

Mode of Operation

Individual 2 x 2 switches are combined into a locally control-
led network. Control of the individual 2 x 2 node is gener-

ated within itself from the signals presented to it, without
regard to the state of the rest of the network. There are no

latches or flip-flops within the CN, it is entriely combina-
torial logic.

Storage Capacities

words

ns cycle
technology

Connectivities

To/From

Proc/coord

EM mod./
coord

Function or Name
No.

Signals Timing Comments

Data path, processor 24 20ns/frames 513 such

side 120ns major connection

timing
Data path, EM side 24 same 522 such

connection

coord Control 2

Rel iabil ity/Repair abil ity/Tr ustwor thiness

All data passing through the CN is covered by SECDED,

resulting in the correction of sing]e transient errors, and
the detection of all hard errors.

The internal redundancy of paths will provide that function
continues for some, but not all, of the failure modes of the
CN.
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Table 5-11. Connection Network (CN) Characteristics (Cont'd)

Physical

Projected chip count:

Size:

39280

Power:
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Port = 32 x (EMno MOD 512) + 1 for 512_EMno _ 527

Within each cabinet, for the 256 ports in that cabinet, EM modules

are attached to all even ports 0, 2, 4, etc., through 254, and to
odd ports i, 35, 39, and 103. In four cabinets, there are 512 +

16 ports thus addressible, allowing up to seven spares. Any spare

can be used in place of any failed EM module, up to four total

limited by the remapping in the CN buffer.

Furthermore, the remapping described above is done with simple

wired-in shifting, and ORing. The substitution of spare for bad

EM module is done by substituting one EM module number (521, 522,
523, or 524) for the EM module number of the failed module. The

conversion from EM module number to port number is fixed, mostly

jsst by wiring, in the CN buffer, as shown in Figure 5.12.

5.7.4 Hardware Aspects

5.7.4.1 Clocks and Synchronization

Requests are made in synchronism with the "CN clock". The CN

clock is a submultiple of the processor clock. The CN clock will
be synchronous and simultaneous across all requesting ports (512

processors plus coordinator). The acknowledge from EM module is

received within a single CN clock period, since the CN clock
period is greater than the roundtrip delay through the network.

Since EM can be accessed only in synchronism with the CN clock,

the EM cycle time will be a multiple of the CN clock.

Processor clock is distributed in synchronism to all processors.
A signal which selects every mth processor clock pulse as the CN

clock is also distributed from the clock source, but the timing

reference is carried on the processor clock itself.

The values computed from projected characteristics are 40 ns for

processor clock period, 120 ns for CN clock period, five CN
clocks, or 600 ns, from the beginning of one request for read

access (5OADEM) to the beginning of the next request for read

access from the same processor, given that there are no blockages
in the CN itself. For store access to one EM module, the CN

buffer must wait 360 ns before accessing any other EM module, for
either read or store.

5.7.4.2 Switch Element

Figure 5.13 shows the logic in one switch element. The control

logic occurs once and the sets of AND-OR gates are each repeated

twelve times as indicated on the diagram.
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For the processors, several mappings have been tried or proposed_

I. processors 0 through 511 attached to ports 0 through 511.

2o Same, except processor number is bit-for-bit the reversal

of port number. That is, processor number II0000000 is

attached to port number 000000011; processor 1 is
attached to port number 256; and so on.

3. Processors 0 through 511 connected to even numbered ports

0 through 1022.

4. Same as 3, except for the bit-for-bit reversal. That is,

processor 110000000 is attached to port number

000,9000110; processor 1 is attached to port number 512,
and so on.

5. An assignment of processors to ports such that the

connec_ivities of the omega network will make connection

cyclically among the processors, processor N being able

to transmit to processor N+I.

6. A random assignment of processors to ports.

Similar assignments can be made on the EM module side, except that
the EM modules from number 512 to number 520 must be allocated

also.

Mappings 1 and 2 can be eliminated by the observation that all the
Processors, or EM mdoules, are crowded up into one part of the

network, creating additional conflicts. This expectation is

validated by the results of the CN simulator using these mappings.

Mapping number 6 can be eliminated by the argument that other
mappings give much better results for the frequently used

p-ordered requests and p-q-ordered requests than they do for
random requests. The best operation seen with the simulator

suggests that mappings 3 and 4 should be used, one on either edge

of the network. The best case actually simulated was processors

using mapping 4 and EM modules using mapping 3 on the simple

duplexed network. Call this the "baseline" mapping function.

With the above choice of mapping functions, the known frequently

used requests are serviced with i00 percent or near-100 percent

request success, and random cases are serviced. The simple

duplexed network shows an average of 77 percent nonblocking in the
network for random requests. The duplexed network with interlayer

paths shows 87 percent nonblocking, and also represents the rate

of request success seen on random p-ordered vectors. Success rate

is 100 percent on requests with skip distance = i. Success rate is

near i00 percent on p-q-ordered vectors with skip distance = 1

within the pieces of vector.
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For any mapping, there is a bad case, a permutation in which only
32 out of the 512 accesses requested are granted per BM cycle. It

is desirable that this case be one that is not expected to occur

(note that the bad case is not a catastrophe, it is merely a
excess access time for one memory fetch). For mappings 3 and 4,
the bad case is when the EM accesses desired are the bit-for-bit

reversal of a sequential index. This case actually occurs once in

one of the several ways to program a fast Fourier transform.

Hence, investigation of mappings is expected to continue,

including mapping No. 5, which moves the bad case to some more
random permutation, and allows an interesting data exchange

pattern for the SHIFCN instruction. However, the Fast Fourier

transform, with one transform executed in parallel across the

array, does not OCCdr in any aero flow code or weather code

evaldated. The FFT's in one weather code are executed serially,
512 FFT's in 512 processors, and do not contain the bit-for-bit

reversed subscripted parallel fetch request.

It might be noted here that requests within the Connection Network
refer to a CN port, not to a processor or EM module number. There-

fore all mapping must be done external to the CN. Mapping of a

processor number to a port _ is implications only for the wiring
pattern that is used to let _ _ch processor know its own number.

Off-line spare processors are inhibited from making requests to

anything other than spare EM modules. This is done in the CN

buffer logic of the processor. In addition, the CN buffer logic

is responsible £or mapping EM module number to CN output port.

This implies that the provision for spare EM modules must be
accommodated in the remapping from EM module number to CN port

number, since the ports will not be physically relocated when a EM

module is spared. In every CN buffer, four port numbers will be
caught and replaced by substitute port numbers.

The suggested mapping from module number to port number is as
follows:

First, put the most significant bit of EM module number at the

least significant end of port number. This gives

Port = 2 x EMno

and would give

for 0 <_ EMno _ 511

Port = 2 x (EMno MOD 512) + 1 for 512 _ EMno _ 520

This last formula is unacceptable as it puts all nine high-order

EM modules into the first cabinet. Port numbers are rigidly
assigned to cabinets, one quarter to the cabinet. The second
formula may be modified as follows:
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The simple duplexed network would be packaged as follows:

The 512-wide, 10-deep by 2 layer arrangement of nodes can be

partitioned into 2-wide, 2-deep by 1 layer subsets in which every

subset is like every other subset. A 1-bit-wide slice of this

subset will fit on a 24-pin package as a single chip of moderate

complexity, 24 x 256 x 5 x 2 such chips will implement the entire

CN. This choice yields a total of 57,440 packages, all identical,

all in 24-pin packages. One observes that the use of the data

lines is half duplex, not full duplex. If bidirectional data

lines were used, a more complex chip, handling both directions of

data on the same line, would still have the same pin count. Strobe

and acknowledge, however, could not be combined. The result would

be 13 packages per node, instead of 25, and the total chip count

of 13 x 256 x 5 x 2 would be 39,280.

In a 40-pin package, the subset two nodes wide by two levels, and

both layers deep could be accommodated, so that exactly half as

many 40-pin packages would be used, or 28,720 packages without,

and 19,640 packages with, bidirectional data lines. In any of the

four cases, the control logic is replicated on each chip to reduce

pin count. The next-to-largest of these various projections is

used in Table 5.11 (which shows the CN Characteristics) to be

conservative without complete pessimism.

A complete new chip design is not planned. Rather a gate array

implementation is likely.

5.7.4.3 Packaging

Most of the CN is packaged within the EM cabinets, an identical

subset of the CN being found in each of the four cabinets. Note

that in Figure 5.11 the Omega network to the right of the second

lever of logic is exhibited as four identical Omega networks of

one quarter the width. Thus, the 80 percent of the CN past the

first two levels of logic is found in the EM cabinets.

(If the processor cabinets had enough room, and if processor

numbers are assigned to cabinets in the correct pattern, the same

partitioning of 80 percent of the CN to processor cabinets can

also be achieved. An interesting puzzle is to devise those

assignments of processor number to cabinet that allow all of the

CN to be distributed among the processor and EM cabinets, with

none of the CN assembled in any one central location, such as

colocated with the coordinator and diagnostic controller.)

5.7.5 Desi@n Rationale and Changes from Preliminar_ Study

The CN seen here represents a major change, and a major

improvement, over the transposition network described in Ref. 1

and Ref. 2. The transposition network was at its most efficient

only for 512-1ong vectors. For p-q-ordered vectors, the access

time went up proportional to the number of pieces into which the

vector had to be divided (five pieces for a 100 x I00 x 100

5-55



problem in the third, or hard direction). Conditional state-

ments within DOALLs resulted in complex code in those processors

that were trying not to execute anything; they had to pretend to
be fetching and storing to EM like other processors in order to

keep the synchronizations straight. Analysis in the compiler was

therefore also complex.

With this connection network all these complexities disappear.

Each processor is completely independent of any other processor.
The language has been simplified, since restrictions on
conditional statements and labels nave been removed. The compiler

has been simplified, since the conditional LOADEM and STOREM

operations are no longer necessary, and a lot of address
calculation that took place at compile time, or which had to be

allowed for in the old control unit, is not needed with the

present connection network.

The CN chip count represents another cost/performance
optimization. For performance, a 516 x 5?8 crossbar switch, with

no conflicts, and all accesses being granted on the first attempt

at request, would be preferred. However, the crossbar switch has
275,088 crosspoints, whereas tLe CN has 40,960 crosspoints (four
in each 2 x 2 bode). This is just 15.2 percent as many

crosspoints, reflecting a large ratio in hardware also. Despite
this huge hardware saving, the CN has I00 percent success in

fetching vectors in two of the three directions, and a success

rate of 77 percent (or 87 percent if the alternate design is

taken) in the third, or "hard" direction.

A second optimization of speed vs. hardware cost occurs in the

path width of the CN. At Ii bits per frame, we need a path that

is 12 signals wide, _nd takes five frame times to transfer a whole

word. At 20 ns per frame this means that the delay due to
serialization of the data word is an additional 80 ns, and

dividing address into two characters adds 20 ns. The delay due to
access time in EM is on the order of 200 ns (actually, it is yet

to be determined, and the recent TI announcement o£ a 64k-biz RAM

makes it appear that EM will be faster than projected in ref. ]).
The delay due to round trip transfer time through the cables and

logic of the CN is estimated at 120 ns. Thus the i00 ns added
dglay due to serialization of address and data is small compared
to the 320 ns or so minimum possible access time. In Reference i,

a path width of 8 pits was chosen as adequate. This has been
increased to ii bits in order to present the request in fully

parallel fashion; the request being the port number on the EM .:ide
of the CN.

A third optimization concerns the time it takes to compute the
control of the CN. With unlimited amount of time for computing

the setting, the Benes networ_ can produce a set of paths such

that all processors have their requests g_anted immediately, i00

percent of the time. The Benes has fewer components that the CN.
Unfortunately, we are trying to make connections in nanoseconds.

Opferman and Tsao-Wu, Ref. 7, show that the amount of computatio.1
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required to find a non-blocking setting for a Benes network is on

the order of N 2 computational steps, or Nlog N if an associative

memory is available. This is certainly intolerable to compute at

run time when the data is being fetched, and in our opinion is

intolerable at compile time also. Furthermore, the computations

impose synchronization onto the processors, since one new request,

asynchronously added to existing set of latched up requests

requires a whole new control computation. Hence, we have opted to

search for suboptimum, but fast, control determinations, having

each node making its own determination of its own setting on the

basis of [ocally available information only, and ignoring the rest

of the CN.

5.8 DATA BASE MEMOBY (DBM)

Data Base Memory (DBM) is the window in the computational envelope

of the FMP. All jobs to be run on the FMP are staged into DBM

Delete running both program and data, all output from the FMP is

staged through the DBM. DBM can be used by the programmer to back

up EM for those problems whose data base is ]arger than EM.

Contrul or the data base memory is from a I)BM controller,

(described in the next section), which accepts corn,hands both from

the coordinator for transfers between DBM and I;M, and from the

host for transfers between. DBM and the file system.

The design chosen is a C('D _,emory based on 256k-i,it ,,;_i_:.s which

ar___ projected to be avai]ab_e in the 1980 peYiod. ^_te_nativ<s

are discu::sed in the sectioll on de--ign rationale. J.ldUt, 5. 14

_'.-ows the g_nera] organization _[ the Data Base Memory. The

d,,t,_i ts ,)F ri,i.; organization are <]iscu,,,sed in mor(_ detail i_l the

he×', sub..,,_:t i,_l,.

Tb: i)rimlry us, _,I Lne I;BM is as a staging area rot joos g_>:ng to

aN.l coming _r,;m tl:,' FM_. It can also b;_ us<_d as a sour,<, [oI

ov,_ laying dat,_ and program into the _M[" for large jobs. It 'b,÷',

?os:{ible to transfer less than a full block, but all transfers

must begin at a bl.ock boundat'y.

5.8.1 Genezal Storage Characteristics

The qeneral organization of the DBM is a controller to]ether with

a general CCD chip array, used as the primary storage area, a

number of block-sized buffers, used for speed matching on data

transfer interfaces, and error controls.

The design described here is based on the assumption that 256k-bit

CCD chips will be arranged in the form or 128 shift registers of

2,048 bits each. It is also assumed that the shift late o[ the

devices will be 2.5 MHz.
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DBM files come from and are moved to the SPS file management

system. Over 99 percent of this traffic is expected to be simple

moves from DBM to disk pack. Twenty M-bits/sec on this path

yields large safety factors over the traffic actually required,

even after making allowance for the fact that short jobs will be

bunched in prime time. The four channels provide 20 Mbits/sec

with 5 MHz disk transfer rates and 40 mbits/sec with the i0 MHz

rates available in recently announced products.

No buffering is needed on the EM side beyond the one-word buffers

in each EM mod_,_e. These one-word buffers, and the 240 ns cycle

time of the E_ modules, together ensure that the DBM controller

never need wait for an EM response.

DBM-EM transfers have priority over CN servicing in the EM

controls. However, there is little interference with processor

accesses to EM. For example, when transferring from EM to DBM,

one EM cycle loads 512 of the pe_-EM-module one-word buffers, and

then waits for 12.8 microseconds before another EM cycle is

required for the DBM transfer path.

Table 5.12 summarizes the characteristics of the DBM.

5.8.2 Soft Error Control

As a background job, the DBM controller periodically initiates an

access for the purpose of reading the contents of a block and

rewriting that same block with all detectable errors corrected,

since errors are spontaneously cre, _ed in CCD memories at a low

rate. These errors are apparently caused by background radiation

effects on the CCD chips, discharging the little capacitors by

temporarily ionizing the oxide. The rate of periodically

initiating access can rationally be determined only after getting

the vendor's specification. Preliminary Fairchild data indicates

that one should scrub through the entire DBM every seven minutes.

At that rate, this background access would be initiated for a new

block every 55 ms. Error scrubbing accesses will not queue. If

one is delayed beyond its 55 ms time slot, then the whole cycle

will slip to 7 minutes plus 55 ms.

5.8.3 Design Rationale and Changes from Prelim_',_ry Study

The major change from Ref. 1 & Ref 2 was the reorganization of the

internal structure of the DBM CCD storage array to allow higher

bandwidths to and from the EM modules and to and from the file

storage system.
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Table 5-12. Data BaseMemory(DBM)Characteristics

Numberin System: I

Function

To serve as staging area for FMP jobs; to serve as memory

extension for FMP jobs that will not fit into EM and PMs.

Mode of Operation

Stor, s in blocks only. }{as access to support processor file

system on the one side, and to the EM on the otheL- side. _. DBM

areas may be used by the file system.

Storacig_Capacities

134,217,728 words 131072 words

400 ns cycle shift rate plus 280ns cycle

256k-bit CCD technology 64k-bit RAM

dynamic MOS

Connectivities

To/From Function or Name

No.

Signals Timing Comments

Support Processor

EM

DBM controller

Data channel

Data channel

Control

TBD 40 mega-

bit:_/sec

TBD 40 m_qabl ts/

sec.

TBD TBD

Reliability�Repairability�Trustworthiness

All words covered by error correcting code.

Errors are periodically removed by reading, doing error

correction, and rewriting.

Sections of DBM can be locked out by software, so that

function can be provided by the remaining working portions.

Physical

Projected chip count:

Size:

Power:

29160 (28160 memory + 100(I control

and misc.)

176 boards of 166 chips each

10kw operating, 1 kw standby
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Two major data transfer paths exist, one to the EM and one to the

disks of the File System. The desired transfer rate to and from

the Extended Memory (EM) is 40 M words/sec. To accomplish this,

the DBM storage area will be organized 440 chips wide for parallel
emission of eight 55 bit words by 64 chips deep.

The natural block size with 2,048 bits in each shift register, the
eight words in parallel delivering a block of 16,384 words, is

adopted. There are 8k blocks for a total of 134,217,728 words.

Error correction is a SECDED, probably the modified

Hamming-plus-parity implemented by Motorola's 10,163 chip.

Since the array of CCD chips is 64 x 440, the DBM is constructed

in a number of physical modules; each one 8 x 440 chips. Cards

are 20 bits wide, 22 cards per module. The repair philosophy is

to pull and replace individual cards, and the degraded mode of

operation would be to run with one or more modules missing, and

the operating system would have to be told to avoid assigning any
data to that space.

There are eight block-sized buffers, which stand between the CCD

storage and the host interface, in order to reduce the

interference with DBM-EM transfers produced by simultaneous

DMB-file system transfers. They also serve as timing buffers to

the file system's disk packs, eliminating the need for block sized
buffers elsewhere in the data channel. These buffers are

contained in two memory modules constructed of the 64k-bit dynamic
RAM chips used in the EM modules.

J

After the transfer of a block to or from the CCD store, the shift

registers rest at the starting position until shifting is required
by the refresh requirements, or until the CCD store is again

addressed, whichever occurs first. The store will be periodically

addressed for error control reasons, see 5.8.2 below. Therefore,

whenever there are several requests for transfer pending at once,
or when they occur with sufficient frequency, the access time is
essentially zero to the first word of the block. For transfers

arriving at random times, far enough apart in time so as not to

interfere, the average access time is given by:

2

Tar = 1/2 (T b /T r)

where Tb is the transfer time of a single block (0.82 ms) and T r

is the time between refreshes. T r will be in the specification of
the device, and is expected to lie between 1 ms and i0 Ins. There-

fore, the average access time for random data at low usage, to the

first word of the block, has an upper bound which is expected to

lie between 0.67 ms and 0.067 ms. As traffic increases, the

access time is mostly due to interference between competing acces-
ses, while the contribution due to delay in the memory goes to
zero.
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The DBMdesign seen here is the result of comparing a number of

different devices. The other possibilities include:

Magnetic bubbles. Rejected because the bandwidths would

requile the reading and writing of thousands of bubble chips
in parallel, and also because of the inherently greater

complexity of bubble systems. Each bubble chip requires

several support chips such as drivers, sense amplifier, etc.

Rotating magnetic storage. With enough heads in parallel,
and a fast enough rotation late, magnetic rotating storage

can supply the DBM requirements. However, the programming

becomes complicated by considerations of data organization
and access time. Blocks want to be very large to amortize

the large access times over the high transfer rate

requirements. For example, to get full transfer rate from a

I0 ms disk requires blocks that cover the entire track, or

blocks i0 ms long. If full transfer rate is 40 million words
per second, the blocks are almost half a million words each.

For some purposes this is a severe restriction.

64k-bit CCD's. 64k-bit dyanmic RAMs will be preferred by

almost all equipment designers over the shift register CCDs.
With the recent appearance on the market of dynamic RAMs, it

is to be expected that the 64k-bit CCDs will disappear.

64k-bit dynamic RAMs. These would make an acceptable back-up

DBM design. With the increased cost would come a measure of

increased performance and freedom from the hardware-defined
block structure.

One last possibility should be mentioned for the future. The same

device fabrication, tooling and lithography te.'hniques which are

expected to allow the development of 256k-bit CCD chips can be
expected to result in 256k-bit dynamic MOS RAM chips within a year

afte_ the CCD chips are available. Enough advantages may accrue

from the use of these chips in terms of increased performance and
freedom from a fixed, hardware-defined block structure that these

RAM chips would be used in the DBM design.

5.9 DATA BASE MEMORY (DBM) CONTROLLER

The DBM controller interfaces two environments, the FMP internal

environment and the file system, since the DBM is the window in
the computational envelope. DBM allocation is under the control

of the file management function of the support processor. The DBM

controller has a table of that allocation, which allows the DBM
controller to convert names of files into DBM addresses. When the

file has been opened by an FMP program, it is frozen as far as
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!! allocation is concerned, and must remain resident in DBM until

either closed or abandoned. For open files, the DBM controller

accepts descriptors from the coordinator which call for transfers

between DBM and EM. These descriptors contain absolute EM

addresses, but file names and record numbers for the DBM contents.

The DBM controller therefore has two main elements.

programmable controller and second, hardwired channel

accommodate the data transfers.

First, a

log ic to

The software response time of the DBM controller shall be less

than i00 microseconds to Coordinator requests. This demands that

the conversion from file name to address be simple table lookup,

and also that the response of the DBM controller to Coordinator

commands be essentially instantaneous; i.e., either the normal

state of the DBM controller is waiting for an Coordinator command,

or Coordinator commands have a priority interrupt within the DBM

controller.

The actual channel controls for transferring a block of data are

independent of the controller that does the table lookup and

handles the exception conditions. Address counters, limit

registers, and limit comparators are separately implemented, not

programmed, because of the high transfer rates involved. There

are five such channel controls, one per host channel, and one for

the EM interface. The entire bandwidth of the EM channel is

devoted to whatever single transfer is being effected at a given

time.

Operation is as follows. When an FMP task has been requested, the

support processor passes to the file manager the names of the

files needed to start that task. In some cases existing files are

copied into newly named files for the task. When all files have

been moved into DBM, the task starts in the FMP. When the task in

the FMP opens any of these files, the allocation will be frozen

within DBM. It is expected that "typical" task execution will

start by opening all necessary files. During the running of a FMP

task, other file operations may be requested by the user program

on the FMP, such as creating new files and closing files.

EM space is allocated either at compile time or dynamically during

the run. In either case, EM addresses are known to the user

program. DBM space, on the other hand, is allocated by the file

manager, which gives a map of DBM space to the DBM controller. In

asking the DBM controller to pass a certain amount of data from

DBM to EM, the Coordinator, as par_ of the user program, issues a

descriptor to the DBM controller which contains the name of the

DBM a_ea, the absolute address of the EM area, and the size. The

DBM controller changes the name to an address in DBM. If that

name does not correspond to an address in DBM, an interrupt goes

back to the Coordinator, together with a result descriptor

describing the status of the failed attempt.
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Not all files will wait to the end of an FMPrun to be unloaded.
For example, the number of snapshot dumps required may be data
dependent, so we maywish to create a new file for each one, and
certainly we shall want to close the file containing a snapshot
dumpso that the file managercan unload it from DBM.Whenthe FMP
task terminates normally, all files that should be saved will have
been closed by the FMPprogram. The strategy that supports
restart has not been detailed.

The file managermay choose to leave read-only files in place in
DBM,on the chance that the sameread-only file may be asked for
by more than one task.

5.10 DIAGNOSTICCONTROLLER(DC)

The diagnostic controller provides a channel whereby the Support
Processor or logic Jan at the maintenance panel, can impose
diagnostics upon the FMP. The strategy behind the dia.]nu.,tics is
that any portion of the FMPcan be set to somearbitrary state,
and thc_ncaused to execute somefixed function or execute for some
fixed amount of time, and that the resulting state ca._ be
observed. The Diagnostic Controller's access is dir,_ct to the

coordinator. Access to the processors is indirect, in that the

coordinator has direct access to the processors, and the diagnos-

tic controller manipulates the coordinator. Chapter .5, in dis-

cussing the diagnostic programming, discusses these relationships

in more detail.

The output of the diagnostic controller is a set of co,hands to

the Coordinator and the DBM controller. These commands are yet ho

be determined Jn detail but they are of the general type of the

following examples:

LOAD REGISTER R

READ REGISTER R

EXECUTE the instruction presently residing in the program

register and then halt

HALT all operations, possibly by suspending the clock

INITIALIZE a predetermined subset of

predetermined state (probably all zeroes)

registers to a

The input of the diagnostic controller comes from either the

support processor or from a maintenance terminal. The inpu= can

cause the diagnostic controller to emit single commands, or to

emit a series of preprogrammed commands. In order to emit meuning-

ful sequences, and to collect the results of those sequences, it

is envisioned that the diagnostic controller contains a mini or

microprocessor. A test control language will be provided.
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The diagnostic controller is a debuggingaid, a system integration
ai_, and is used only as a fall-back mode of operation during

maintenance. System initialization, upon power up ur other cold

start of the FMP may also use some of the DC capabilities for

initialization of selected registers and loading of bootstraps.

5.11 POWER CONSIDERATIONS

The power supply design for the FMP will consider the following:

- A small number of centralized power _'onditioning modules

that accept raw AC power from the mains.

- Switching regulators for efficiency

- Defense against faults in the incoming power

- Defense against faults in the FMP

- Noise reducing groundinq muthods.

- Non-volatility of DBM contents

A power supply system that takes all these features into account

is described in this section.

Total power for the FMP is estimated at 250 kw, based on an

average of 0.8w £or each of the 200,000 circuit packages and on 65

percent efficiency in the power supply system.

i

!

5.11.i AC Modules

The block diagram of the power supply system is shown in Figure

5.15. Raw AC power is supplied to six places (labelled "i" in the

figure), namely:

- The maintenance panel, which also contains the central

power system control

- The DBM power system

- Four identical AC modules.

Each of the six places to which raw AC input is supplied contains

an AC voltage monitor. The design intent is to shut the machine

down for high line or low line that is potentially damaqing to the

machine, and to send a one-bit message to the maintenance panel

and the support processor for low-line conditions that may cause

garbling of data.
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Out of the maintenance panel's power system comes various DC
voltages (labelled "3") for the maintenance display and the

central power control. These include +5 at 20 amps for logic and

LED drivers, +!2 at 0.Sa, and -12 at la, plus a switched i@ llSv

AC for the CRT which has its own self- contained supply.

The AC modules receive "turn-on", "turn-off" signals from the

central power system control, and send "fault" signals back to the

central control. Each AC module supplies up to 250 a at 158 volts

DC (labelled "2") for the switching regulators attached to it.

The AC module also combines the fault signals from its attached

power supplies into a "cabinet fault" line, and shuts down for any
perceived faults. It contains line filters. In complexity, it is

similar to the AC module of the B-6700. Power efficiency is
between 96 percent and 99 percent.

The requirement that the FMP power system ride through

undervoltage transients, and tolerate voltage spikes from the
mains, influences the design of the power control modules. A

transforme[less rectifier in the central power control module,
with switching regulators distributed around the FMP, is a system

inherently tolerant to undervoltage sags and transients, and

impervious to spikes. In addition, the switching transients of

the regulators tend to be soaked up by the filter capacitors at

the control module's rectifier. Whether either a motor-generator
set or battery backup is needed, would depend on actual line
characteristics at Ames. If the line characteristics are known

before the design is carried out, the system can be designed so
that the expense and inefficiency of the motor-generator set can
be eliminated.

The DBM power unit provides 30 amps at 158v for the DBM controller

logic supplies (labelled "5"), and a separate line ("4") for 35

amps at 158v for the memory chips of the DBM. There is also a

stand-by mode in which 8 amps at 158v is supplied to the memory

cabinet from batteries during power outages of up to 15 minutes.
(15 minutes is selected on the basis that that is long enough to

save all of DBM on a single disk pack through a single disk

channel. The resulting 316 watt-hour requirement can possibly be

supplied by an ordinary sealed lead-acid battery.) The DBM power
unit also contains logic to handle fault situations, and the same
line filters that are in the AC modules.

5.11.2 Other Power Supplies

Besides the seven units described briefly above, there are within

the cabinets the following:

516 processor power supplies each contained physical]y

within its own processor. Each one is a 70 percent or
better efficient switching regulator supplying 40 amps at

5v, and 0.5 amps at -12v.
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44 supplies at 5v, 160 amps. Except for the lower power

]evel, these are similar to power suppliec built by

Burroughs for PEPE. There are eight in each EM cabinet,

and four in the Coordinator-connection-network cabinet,

and eight each in the DBM controller and the DBM memory

cabinet. These are switching supplies at 75 percent

efficiency.

6 supplies at 12v, 2 also working from the 158v out c_f fhe

AC modules. These are used in Coordinator, DBM

controller, and EM cabinets for +12v and -12v for various

purposes.

>:ach of'. the supplies above contains remote voltage sensing,

app_oF_riate over-current sensing, current limiting or fold-back,

over-voltage and under-voltage sensing.

5.11.] Grounding Considerations

Grounding is an area of de:_ign in which even qualified electrical

an,i ,_]_ctron]c engineers sometimes propagate false myths. Some of

the con[usion is due to failing to distinguish between various

[unctions of the conductors called "ground", which in any given

case may or may not be at the same voltage, and may o[ may not be

the: s_Jme conductor. Some functions are:

- Neutral in an AC distribution system.

- i_arth, or an external zero voltage reference.

- Safety ground, enclosing the equipment in ouder to prevent

shock hazards.

- Shields, enclosing electrically active circuits in order to

l_rev,_nt transmission or reception of interfering electro-

ma_]netic signals.

- Referenc_e voltage. The signal w)itages in the equipment are

measured with respect to the reference voltage. Reference

voltage is often called "logic ground".

- Return paths for currents.

Some _]etails resulting from these considerations are:

The ground return from backplane to power supply is never

used as part of the path that connects one backplane ground

to another backplane ground.

Every module has its logic ground tied to chassis, so that

there will be no floating grounds when the modules are

tested as stand-alone modules. These _ies may be resistors

if unwanted ground currents would b_ set up by direct

connections.

Every single-ended signal which traverses froi_ the area c_f

one backplane to another is accompanied by a wire conductor

for the return current of that signal, and the retur_ con-

ductor is connected to reference voltage at all points at

which the sign_l is either generated or used.
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5.12 CIRCUIT AND PACKAGING TECHNOLOGY

5.12.1 IMPLEMENTATION TECHNOLOGY UPDATE

5.12.1.1 SUMMARY

The semiconductor industry has continued to improve both device

density and performance since the previous implementation technol-

ogy submission. Smaller device geometries have been achieved in

production with the application of Electron Beam processing tech-

niques. The initial utilization of the E Beam tool has been in

the mask generation area where smaller geometry and more rapidly

generated masks have been produced. This advantage coupled with

projection exposure of wafers as compared to the use of contact

masks and plasma or dry etching has enabled higher precision

devices to be generated in a production environment. Line widths

are predicted to diminish to under one micron. The priority of

devices to which the new processing technology is applied has been

first in the memory area and second in the micYoprocessor area.

Microprocessor availability in the 16 bit logic density area has

increased from just a few, to a selection of a half dozen or so

with performance estimated to be in the PDP 11/45 class or

greater. Direct address capability has expanded from a 16 bit

limitation of 65K to a 16 megabyte level.

During the initial manufacture of large (65K) CCD Memories a

higher than expected random failure rate was observed. The

failure mechanism was later identified as being caus?d by alpha

particles which modified the charge being transported, thus

destroying the information stored in the memory. Solutions were

developed for greatly lowering this failure _ate by reducing or

eliminating the major source of alpha particles and providing a

shield layer on the chip. The major source of alpha particles was

reported to be in material used to package the CCD chips.

In the very high speed area, gate arrays were becoming an

interesting alternative for achievement of dense logic implemen-

tation. The economy of using gate arrays is dependent on quantity

of the devices required for the systems to be produced. Basic

arrays exist at Motorola and Fairchild in the nigh speed ECI, area.

A gate array exists in the proprietary Burroughs CML circuit

family (BCML).

Memories anticipated to be available in the 1979/1980 time frame

have already been delivered on a sample basis to selected manu-

facturers. These include the 65K dynamic RAMS and 16K static

RAMS. CCD 65K bit memory circuits have been delivered for incor-

poration into CCD memory modules. Work has begun in definition of

256K bit CCD and 256K bit RAM with expectations of availability in

the 1980/81 time frame.

%
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Gallium arsenide efforts in the high speed sub-nanosecond logic
area have continued at a number of manufacturers' £acilitles.

Specification circuit configurations for the gallium arsenide

MESFETS are being reviewed along with development of production

procedures to manufacture these devices. Speed power estimates
vary from i00 picosecond propagation delay range to about 300

pico-seconds with power dissipations varying from about .08 - .3
milliwatts per gate.

Effort is being expended in utilization of the CMOS SOS type of

circuit implementation. At the Solid State Circuits Conference in

1978 the general discussion seemed to indicate that CMOS SOS gate

density problems would be somewhat overcome with the tighter line
width. The attractiveness of the CMOS SOS circuit for NASF

applications is the projected lower power dissipation o[ gates not

memory in the CMOS LSI circuit.

The specific implementation approach to be selected for the NASF

FMP must be postponed as long as possible due to the dynamJc

developments occurring in the semiconductor technel _y area. At
present, the bipolar _CM or CML candidates look the most promising

[rom a performance/risk point of view. Although developments in

higher speed galliam arsenide devices are progressing, the risk

involved in such an infant technology does not seem to warrant the

advantages gained in higher speed.

DuYing the zurrent contract some additional information in both

ECL arrays and BCML circuits has been reviewed. Some
characterisitics of the ECL voltage compensated arrays as well as

information on BCML are included [n the following.

5.12.1.2 ECL Ar ravs

Motorola has announced the MECL 10K Macroceli Array that consists

of 48 macro cells with 32 interface circuits and 28 output
circuits. All cells can have series gating. Structured cells are

pr_defined into logic elements. Interconnect channels are 12 x 12
for 9 macro cells. The macro cells consist of functional circuits

which are interconnected to produce larger portions of logic. The
total number of channels available for interconnection is

approximately 108 x 94. Inter,_al gate delays anticipated are
approximately 900 picoseconds. A maximum of 1.3 nanoseconds is

expected. The maximum power dissipation if all cells are used is

anticipated to be approximately 4 watts. An. equivalent gate

complexity up to 750 gates can be realized on the array. The
average gate power is projected to be 5.3 milliwatts. High drive

outputs can be _chieved at 8 of the interfaces. A capability of

drivinq a 25 oht_ line exists at these points. The die size is

approx{mately 210 x 230 m_Is. It is anticipated that the
semiconductor :hips will be placed in a 68 pin leadless package.

Some proposed connectors exist for the 68 pin package.

5-70



j

J

5.12.1.3 BCML

The BCML-2 (Burroughs' Current Mode Logic) family is a Burroughs

developed circuit family intended for use in Burzoughs' systems.

The family consists of SSl, MSI and LSI circuit types, gate

arrays, register riles, ROM, PROM, EAROM, and RAM. All devices

have on-chlp voltage and temperature compensation. This assures

constant logic levels and constant threshold, hence constant noise

maroins. It also assu_es constant propagation delay over the

entire operating voltage and te,lperature ranges. Two types of

power supply are specified. Logic circuits use -2.7V + 30% or

-4.8V + 25%, while memories use only -4.8V + 25%. A]_ devices

have o_-chp output resistors which serve to-source-terminate 50

ohm transmission lines. On-chip Test and Diagnostic (T&D)

monitors are used to detect opens and/or shorts of any logic net

and loss of power supply voltages to any circuit chip.

The salient [eatures of the BCML family are given in Table 5.13.

5.12.2 Packaging

5.12.2.1 General

Final choices of _ackaging technology can be deferred until the

system _lesign is nearly complete. However, for performance and

tell.ability analysis, scheduling and cost, preliminary selections

must be made. Basic high speed (ECL) packaging technology has

been developed over th6 past decade thau provides high performance

and reliability at quite reasonable cost. The _nanufactur ing

tooL::_, and assembly and test procedures, are all fully developed.

This technology includes a family of specified and use quallf_d

comuonents and hardware. Advances in this area are under

continual study. The cur rent status and per formance

characteristics of this t_chnology are discussed in the folloving

section;3.

5.12.2.2 Printed Circuit Assemblies

Multi-layered printed circuit assemblies provide a straightforward

approach for the packaging of standard commercial dual-in-line ECL

circllits. The six layer 16 inches by 18.5 inches assembly used by

Burroughs on the PEtE and latter programs provided a capability of

mounting 300 sixtee_ pin dual-in-line packages or 280 sixteen _in

and i0 twenty foul pin packages. The board consists of six copper

layers permitting two signal layers, two voltage layers and two

ground layers. (Figure 5.16). Each signal layer references a

ground plane providing two layers or 50-ohm microstrip. Proper

tolerance is maintained over line width, dielectric spacing and

dielectric constant.
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Table 5-13

F_A°ibRES OF BURROUGHS CML CIRCUIT FAMILY

- High spee, a - 0.7ns per raw gat_

- Lo_ power d_[;.y product 4 p per internal gate for LSI, 6pj for

MSI and 8p_ [:cr SSI

Fully compensated logic levels and threshold - Noise margin:;

an, l propaqation delay rem.ain constant over operating t,_mpera-

tui_c ,*rid w)].tage ranges

- So[n.'ee tern'_nated interco.]nection - On-chip output resistors

properly te_ninate 50 ohm transmission lines

•- C_,ml)] ,:ment,,ry, simultaneous outputs - Simplifies design,

m:in_,:.ize.< clo:_s-talk

- ._'mali Ic>,li.c swing of 440mY -- Provides higher speed at lower

}..._ver, [_ noise generation

- C,:_:51 _ ,t supply current - Reduces noise, fewer or smaller

d, co_[:,.JDq r.apacitors, no dependence on operating frequency

Ac,,.-a'_cc._,!Circuit T_chnique - On-chip use o_ series-gating, gate

sfac_i;,g, e'_l (Emitter-Function-Logic), Schottky-Diod,., gating,

wi rer_-.OR and -AND, staggered thresholds, etc, provide best

[uncLional density at lowest power level

- .P,_,st _ Diaqnostic F_in (T&D) - Facilitate testing of individual

packaHes and isolate faulty packages in operating environment

- 50 pud packa,Te - Increases loqic function capability per de'_ice

an,| :'educes package count

- Mu) ti-chip pac}'age - Increases packaging density, improves

performance, and reduces system cost

SFI to L:.I densities - 50 pad package has capacity to accomo-

date gate de]sities in the order ot 1000 gates per chip
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Figure 5.16 Multilayered Printed Circuit Board for ECL

Figui_e 5.17 illustrates the component side of a fully populated

board assembly of the PEPE type. The aluminum electrolytic

capacitors along the top and bottom edges of the assembly are
utilized to bypass voltage noise for frequencies below 1 MHz. Two

other levels of bypassing control voltage noise, the interlayer

capacity of the board for frequencies above 20 MHz and ceramic

capacitors (contained in the terminator resistor packages) for

frequencies between 1 and 20 MHz. The board assembly is mounted
in a diecast aluminum alloy frame. Camming type handles are

mounted on the front of the frame to provide the insertion force

to mate the four 100-p_n, I/O connectors. The I/O connectors
incorporate a unique socket design that results in low insertion

force and low contact resistance. A single 100-pin connector

nominally requires around a 13-pound insertion force. Four
connectors would result in an insertion force of approximately 52

pounds. The handles are also used to lock the board in place.
Each circuit card module assembly is supported by shear/locating

pins in front and rear.

This assembly can accomodate cam action zero insertion force

connectors which in turn can accomodate the edge connector of

belted cable paddleboard assemblies.

The assembly may be adapted to mount dual-in-line sockets. Each

socket is soldered to the board to pick up the printed circuit
signal trace. In addition, wire-wrap tail on the socket provides

for two levels of wire-wrap. (Figure 5.18).
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Figure 5.18 Multilayered Printed Circuit Assembly with Dual

In-Line Devices and Sockets

5.12.2.3 Interconnections

Two primary techniques for the interconnection of the basic assem-

blies (processors, memory modules, etc.) help guarantee feasibi-
lity of the FMP. Wherever possible, interconnections will be made

with paddle board and belted cable assemblies. Belted transmis-

sion cable with up to 70 conductors, (AWG 28 or 30, silverplated)

on 0.025 inch centers suitable for the FMP signal levels and
frequencies is readily available. Techniques for semi-automatic

assembly of these cables to paddleboards with edge connectors are
fully developed and provide the economical reliable
interconnections.

Where the use of belted transmission line is impractical, inter-

connections are achieved with subminiature 50-ohm coaxial wire.

The coax consists of No. 32 AWG, silverplated-drain or ground

conductor; a wrapped tape shield of aluminized mylar; and an outer
jacket of laminated mylar. The maximum overall size of the cable

is 0.033 inch x 0.043 inch. The drain conductor is compressed

between the aluminum side of the shield and the primary insulation

such that the drain wire is in contact with the shield along the
full length of the cable. Both conductors (ground and signal) are

wrapped simultaneously on adjacent pins (on 0.100 inch centers)
using a dual-bit wire-wrap gun as shown in Figure 5.19.

°
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5.12.2.4 Baokplanes

Backplanes for power distribution are not required for the proces-

sors as they have individual power supplies. However, in the case
of the coordinator and connection network it may be more desirable

to have a centralized power source which for high speed ECL techno-

logy would normally require a laminated backplane assembly.

This assembly consists of three layers of epoxy-coated copper. It
serves the dual functions of: i) mounting the female half of the

circuit card module assembly connectors, and 2) efficiently distri-

buting power to each circuit card module assembly by providing a

low impedance power distribution network.

Power is distributed to each circuit card module assembly via pins

soldered to the individual backplane layers as shown in Figure

5.19. A wire wrap connection is then implemented between the

backplane and associated connector pins. Multilayer, laminated
backplanes are required to minimize backplane impedance (primarily

inductive). A low inductance offers a low impedance to surge

currents, guarantees power supply stability, and gives fast power

supply response time.

5.12.2.5 Cabinet Frame Assembly and Doors

At this time, it is anticipated that the FMP equ_nent would be

housed in cabinets similar to those used on other advanced proces-

sor systems currently being made by Burroughs. A description of

these assemblies is provided in the following.

The cabinet frame is constructed of 0.120-inch-thick rectangular

steel tubing welded into a unitized frame. In certain areas the

rectangular steel tubing is increased in thickness to 0.180 inch
for strength considerations. The overall dimensions of the basic

weldment are typically 81 inches high by up to 72 inches wide by

at ]east 30 inches deep. Maximum envelope dimenslons of the

cabinet assembly, including all doors and end panels are 81 inches

high by 100 inches wide by 32 inches deep.

Bi-fold doors are utilized on the front and rear faces of the

cabinet. Each bi-fold assembly (there are four) is composed of

two 0.75-inch-thick aluminum honeycomb panels connected by a

unique, extruded, continuous hinge. The stationary panel on the

right-hand end of the cabinet is constructed of 0.062-inch-thick

formed alui_inum. A hinged split door configuration is utilized on

the end of the cabinet to provide access to the rear. The overall

thickness of the split door is 2.13 inches. Each door section is
comprised of 1-inch-thick aluminum honeycomb and 0.0062 inch-thick
formed aluminum.
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5.12.2,6 BCML Packa@in@

5.12.2.6.1 General. A complete family of packing hardware has

been specifically d,Jveloped for the Burroughs CML circuit family.

This advanced hardware family incorporates features to accomodate

subnanosecond high density circuits of greater than i000 gates
each for use in commercial state of the art computer systems. The

family includes low cost modular liquid cooling and power distri-

bution systems. The design concepts placed high consideration on
manufacturability and ease of assembly debugging and maintenance.

The BCML packaging system provides hardware that can be used

across the Burroughs product lines of the computer systems and for
other special applications. The basic philosophy of this pack-

aging system was to partition the second level packaging to be

compatible with functional logic partitioning. By packaginq a

system function within an integral unit, the number of ._/O's
between units is minimized and critical functions can usuall ' : 4

restricted within this unit.

5.]2.2.6.2 Circuit Packaging. The basic partitioning size
selected for the BCML system is a printed wiring board 14" x 21".
This unit is referred to as an island and can accommodate i0,000

logic gates with the current normal mix of SSI, MSI. and LSI BCML

parts. With the increased usage of LSI, and VLSI circuits island

gate capacity will be enhanced.

Another basic goal of the BCML packaging system is to provide for
ease of field maintainability. The following are some of the

packaqinq as well as circuit features that facilitate service-

ability :

I. Plug-in logic packages.

2 A probe system to allow simultaneous contact of all logic

package pins.

3. Provision for in-place testing of circuits.

4. No external components in wiring nets.

5. Test and Diagnostic pin (T&D) incorporated on logic

packages.

The first level of packaging was selected to accommodate a circuit

family aimed at high gate densities. Two package sizes, 25 pins

and 51 pins, are utilized. Multi-chip versions of the 51 pin

package can accommodate up to 3 I.C. chips.
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The packages themselves are a leadless hermetic ceramic construc-

tion. The package has gold plated contacts on 50 mil centers in

two rows on its edges. The package also has an integral metal

heat sink plate. This member conducts heat generated by the

circuits to a liquid cooled frame and also serves as a low induc-

tance ground connection.

Two 25 pad packages or one 51 pad package mates with a 50 pin

=onnector. This connector will also accept two (24) signal I/O

cables or one 50 signal I/O cable. The interfaces of all the

pressure contact systems are gold plated for high reliability.

Two types of connectors are available; this first type is soldered

to the interconnecting printed circuit board and has a wire

wrappable tail while the second makes a pressure contact to a gold

pad on the printed circuit board. These two styles of connectors

provide flexibility in design of the island interconnect media.

There are 108 connectors mounted on the logic island as well as a

liquid cooled frame. The cold frame also serves as a low resis-

tance ground return path. Interconnection of circuits on an

island is accomplished by a combination of P.C. lines and open

wire. A multi-layer board with internal voltage and ground planes

and two external signal layers with 50 ohm lines are used for the

bulk of the interconnections. The shorter lines can be imple-

mented by automatic Gardner-Denver wiring with no performance

penalty. An all wired utility board system utilizing controlled

_mpedanee twin lead and open wire is available for prototype and

limited production systems. Higher density and lower cost P.C.

interconnection systems are beinq developed for both the _n]_

tail and double contact connectors.

Islands are interconnected with a high quality 50 ohm transmission

belt (24 or 50 signals), since a cable interfaces with the same

socket as a logic package, the ,atio of I/O pins to logic posi-

tions is not fixed by the hardware, but is established by the

logic design. This flexibility provides for efficient island

utilization. Figure 5.20 _hows an island assembly mounted in an

module with belted cables interconnections.

5.12.2.6.3 Frame, Cooling & Power: In addition to a standard

logic family, island, and interconnecting belts, the BCML pack-

aging system also provides a mounting structure, cooling system

and power system for a I0 island module. This I0 island module

can be used individually for smaller systems or can be stacked 2

and 3 high for larger systems. The 50 ohm belted calbes provide

module to module interconnections.
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The module assembly enables the islands to fold out permitting

front and rear access thus facilitating testing and maintenance.

This feature is illustrated in figure 5.20.

The cooling system, which can dissipate a 3.6 KW heat load, con-

sists of cold frames mounted on the islands, a circulating pump,

fans, and a liquid to air heat exchanger. Air for the cooling
system is drawn from the computer room. For highly reliable
operation junction temperatures are restricted to 80Oc with a 40Oc

ambient. Much higher power (or lower junction temperature) could
be obtained by using a liquid to liquid heat exchanger with a

chilled coolant circulated through the island. This system does

not require air circulation in the computer room, with heat being

dissipated directly to the building chilled water supply.

The BCML power system is designed to be driven by an M-G set or an

equivalent line isolator. Large systems may be operated from a

site M-G set but a 20 KVA M-G set has been packaged in a sound

proof cabinet for installation in the computer room for use with
small to medium systems.

The }mwer supply itself is a very simple and reliable design,

consisting of only a transformer and rectifiers. Output is -2.7V

± 30% and -4.8V ± 25%. Final regulation is provided by circuitry

on the logic chip. This on-chip regulation produces a constant
current load. Therefore voltage decoupling capacitors are not
requlred on the P.C. board.

5.13 IMPLEMENTATION TOOLS

Burroughs Corporation has a central Design Assistance (CDA) Depart-

ment which is charged with the responsibility of developing and

maintaining a comprehensive set of tools to aid in the design,
manuflcture, and maintenance of computer systems. These tools are

then adapted as needed and used by the various design and manu-
facturing groups.

The design of a complex system such as the FMP, requires the use

of sdch tools. The Design Assistance System (DAS) and the

Burroughs Interactive Logic Design (BUILD) program are examples of
aids used during design. Specifically, the DAS programs provide

assistance in the development of manufacturing tooling from a

detailed logic design. The areas supported are:

Logic partitioning

component placement

:)rinted circuit routing

wire wrap routing

Logic simulation
test generation

Logic schematic generation
rules check

numeric control generation

%
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In addition, design data is maintained in a centralized data base
to insure design integrity.

The Burroughs Interactive Logic Design (BUILD) program allows a

design engineer to hierarchically specify a logic design, and to

verify its correctness using functional simulatin techniques.

After logic verification, netlists are generated from the logic
specification and entered into the DAS engineering data base for

physical implementation.

Figure 5.21 depicts these two systems as they would be used by the

NAS? project.

i
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CHAPTER 6

TRUSTWORTHINESS AND AVAILABILITY

6.1 TRUSTWORTHINESS, AVAILABILITY, AND ERROR CONTROL

6.1.1 General Requirements

As the introduction to Chapter 5 has already emphasized, the FMP
has certain requirements for trustworthiness, availability, and

error control. Among these basic requirements are:

- System availability of 90% or better, implying an FMP
availability of approximately 95% or better, for 20 hours a

day.

- Mean time between aborts vlsible to the user of over i0

hours.

- Probability of apparently successful but wrong runs much

lower that the probability of an abort.

/r

]

In order to satisfy the above requirements, a number of features

are built into the design, includingz

- Spare processors and extended memory (EM) modules, with
software-controlled reconfiguration

- Duplexed operation with comparison of results

- Error detection and error correction on all memories

- "Scrubbing" through CCD memory and dynamic RAM memory to

find and correct any spontaneously occuring errors within
them

- Fault detection within logic circuitry (processor,

coordinator, etc.)

- Software-controlled restart following a program abort

- Logging of all errors, analysis of the logs

- Testing of invariants in the computation

- The ability to observe externally the state of the FMP

- A system of diagnostics and confidence checks

- Error detection in file system, both storage and transfer
paths
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These features are implemented by a combination of hardware and

so ftwa re o

The trustworthiness of computation on the NASF is the combined

result of a series of influences, including

- System software
- Hardware reliability
- Hardware error detection

- Completeness of the confidence and diagnostic checks

- Applications programming characteristics

- Accuracy of failure identification
- Throughness of checks for software errors

6.1.2 Design Requirements

Additional characteristics can be derived from the basic require-

ments of the previous section. These cha[acterlstics were derived

in Reference 5, and can be summarized as follows_

- Less than 1 bit in 1017 in undetected error from processor

memory

- Less than 1 bit in 1015 with error detected but uncorrect-

ible from processor memory

- Less than i bit in 1015 in undetected erlor from EM

- Less than 1 bit in 1013 with erro_ detected but uncorrect-

ible from EM

- Less than i bit in 10 23 bits refreshed in DBM shall have an

undetected error

The derivations were based on observations on how many bits were

accessed from memory and from extended memory during the typical
15-minute run, and on an assumed time of residency in DBM that

might be as long as a day.

6.1.3 S_arin_ and Duplex Processing

Every processor cabinet has 129 processor slots; every EM cabinet
has 132 EM module slots. In the coordinator, there are foul reg-

isters, one per processor cabinet, that designate the spare pro-

cessor in that cabinet. Spare EM modules are designated by regi-

sters in the CN buffel of every processol. The coordinator broad-
casts the designation of the spare to the CN buffer, using BDCST

instluction, and follows that with a FILLR command to load these

registers. Thus the designation of which modules are spare is

changed by softwale lesident on the coordinator.
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Duplex processing has been proposed as a means of providing

dynamic, run-tlme checking of processors by comparing the results

of the same set of computations performed in two different

processors. Two approaches were considered and are discussed
below.

The spare processor designation is used to p_ovide a duplex mode
of operation. First, one must make sure that there are 516 good

processors in the FMP. Second, processor #128 is designated

"spare" in each cabinet. This makes programmatlc processor

numbers 0 through 127 fall on physical location number 0 through
127. Third, the p_ogram is run. Fourth, Processor #0 is

designated "spare" in each cabinet. This makes programmatic

pl:ocessor numbers 0 through 127 fall on physical processors 1

through 128, so that every computation in the run will fall into a

different processor than the first time. Fifth, the program is

run again. Sixth, the results of the second run are compared for
the expected match with the results of the fi|_st run.

Another form of duplexed processing was considered during the
course of the study. Here the duplex mode would be implemented

through some additional hardware. The 512 processors would be
divided into 256 sets of 2 each. The application program would be

compiled and run as if only 256 processors were available. Each

set of 2 processors would execute the same code on the same data,
and the resultts of each would be compared. The operation of the

CN is such that continuous synchronization between the two members

of the pair would require additional hardware means than described

in Chapter 5, such as making both processors use the CN buffer of
one of them. A hardware comFarator would monitor the performance,

and errors would be detecte6 as soon as the outputs to the CN or

to the coordinator, of the two processors, fail to match. Because

of the synchronization problems, and because there seems to be no

real advantage of this scheme over the purely software duplexed

computation described first, the hardware comparator has not been
included in the design.

6.1.4 Error Cor,:ection in Memories

All memory has error detection and error correction in order to
achieve the very low error rates of the requirements. Error

detection is a necessary part of hard failure detection. Error

correction is proposed based on l_xpected memory error rates
between 1 bit in 103 and 1 bit in i0 .

For processor memory and extended memory, a SECDED (single error
correction, double error detection) code is proposed. The actual

error rates in the chips would have to be very good indeed before

simple parity plus retry would provide adequate correction. The
actual error rates would have to be very bad (worse than 1 bit in

108 ) before simple SECDED was not good enough.

%
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For Data Base Memory (DBM), a higher intrinsic error rate is
expected from the chips, since the geometries on the chips are

smaller, and since more refreshes occur per access. Also, a
higher standard of performance is required, since any given datum

will go through many read-write restorations during the lifetime

of the data in DBM. As the computations in Ref. 5 show, we expect

that the same simple SECDED will also be adequate error correction

in DBM. However, the safety factor is substantially less, and a
reevaulation of this choice should be made when the soft failure

rate of the 256K CCD chips become known.

In the DBM it is also necessary to periodically read each word,

make necessary corrections if possible, and write it back in, in

order to keep the probability of multiple errors low enough. This

process is called "scrubbing" and is expected to be designed into

any memory system requiring it. Therefore, the DBM will not
require any external controls for scrubbing. The errors removed

by "scrubbing" are called "soft errors". This term, soft errors,

implies failures where the contents of the storage cell have been

modified in some unexpected or unplanned way (such as by the
effect of background radiation), but which are not the permanent

inability of a storage cell to operatoe correctly. The following

paragraphs discuss the SECDED scheme proposed and also discuss the

scrubbing of errors out of DBM.

6.1.4.1 SECDED

For soft failures, the previous studies (5) show that the improve-
ment factor; due to error correction is essentially infinite; that

is, the system would be unable to produce useful results without
error correction at the presumed soft error rates. For hard

failures, the improvement factor due to the use of error correc-

tion depends on the failure modes. Some failures, such as an
address decoding failure external to the memory chip that causes

multiple bit errors, are not helped by error correction. A fail-

ure internal to a single memory chip is helped by error correc-
tion. In addition, the error correction circuits have failures
that would not occur if there were no error correction. The

analysis following in Section 6.3.3 recognizes the other effects
contributing to undetected errors. That section uses a very

conservative improvement factor of 5 in the number of observed

errors when using SECDED for correcting hard failures vs the
situation where no SECDED is used. The following discussion
addresses these statements in more detail.

First consider the case of soft failures as represented by read

failures. About 5 x 1012 operands are used or produced during the

course of the "typical" 15 minute run (5). If half of these come
from processor memory, that means almost 2 x 1014 bits are fetched

from processor memory during the course of a typical run.

Although accurate projections of bit error rates for large semicon-

ductor memory chips await more experience , it is plausible that
bit error rates may lie between one bit in i0 I0 to one in 1014

bits read. Under the above conditions, without error correction,

it is unlikely that the typical run can even complete successfully
due to soft errors.
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For hard failures however, the picture is different. If one

memory chip output is stuck in one processor, only 1/521 of the

words accessed are affected by that failure. The processor memory
delivers 4 x I0 II bits during the course of the run. If one bit

in every word in that one processor is bad, and if the soft error

rate is 1 in 1012 or better, the run will probably complete

successfully. A failure at a specific bit in one chip is even
less likely to cause trouble.

Since double errors or worse are not corrected automatically with
the proposed SECDED code, it is important to use preventative

measures. When the SECDED logic corrects a failure, a log will be

updated indicatil,g the word and bit position in the memory which

was corrected. These logs will be examined regularly in order to
detect and replace failed parts before they cause an abort.

The error correcting code of Table 6.1 appears to be the best

choice for the FMP. First, it is directly implementable by the
Motorola SECDED parity generator chip (each 8-bit wide slice of

the code exhibits exactly the same pattern of parity checks as
found in that chip). Second, it is much better than a randomly

selected SECDED at detecting triple errors. Even the optimum

SECDED is not very good at detecting triple errors when there are

55 bits used out of the underlying 64-bit long Hamming plus-parity
code block. This proposed code is almost as good as that optimum.

Each "x" in Table 6.1 means that that bit is included in the

parity check represented by its corresponding checkbit. The seven
check bits are the 6 bits of the Hamming code, plus a bit that

allows an overall parity check. Fol improved performance against

multiple errors, the 7th bit contains an "x" only for those bit

positions which enter into 0, 2, or 4 of the other check bits.
Actual overall parity is the parity of all seven check bits. Odd

parity is used.

The bit number in Table 6.1 is not the bit number of the data

word. For one thing, the check bits ale interspersed. T_e corres-

pondence of bit number as seen by the programmer to the bit number
of Table 6.1 is arbitrary. This mapping will be left as a logic

designers option.

Triple errors appear to be single errors to the proposed code.
Some triple errors will be detected when the SECDED circuits

detect a failure and attempt to correct a bit outside the 55-bit

field shown in the table (this is possible since the code chosen

is a portion of an underlying 64-bit long Hamming plus-parity code

block). The code shown in Table 6.1 detects 14.6% of all triple

errors, whereas a randomly selected SECDED would be expected to
detect 14.1% (nine bit locations out of 64 are outside the 55-bit

word).
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TABLE 6.1

Error Correcting Code

%

Check bits

Bit NLmber *

Check bit

Parity
Patterns

Ist

2nd

3rd

4th

5th

6th

Par ity

XXXX X X X

0000000000111111111122222222223333333333444444444455555

01234567890_23456789012345678901234567890L345678901234

.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.

..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx.oxx..xx..xx..x

....xxxx....xxxx...oXXXX .... xxxx.o,.Xxxx ....xxxx ....xxx

........xxxxxxxx........xxxxxxxx........xxxxxxxx.......

... ..... ....... .xxxxxxxxxxxxxxxx................xxxxxxx

....... ................ ... .... ..xxxxxxxxxxxxxxxxxxxxxxx

x..x.xx..xx.x..x.xx,x..xx..x.xx..xx.x..xx..x.xx.x,.x.xx
m

* The assignment of bit number (corresponding to Hamming's) may be

different than the assignment to be found in the register to which

this parity check is attached. The bit number found here is the

one generated as an indication of the bit to be corrected in the

error correcting code.

i
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Codes which are useful at detecting triple errors are also of
interest. One additional check bit allows a code in which triple

errors are almost always detected (better than 90% of the time).

The price for this improved error detection capability is a
connection network (CN) one bit wider or extended memory (EM)

access time 20 ns longer, more complex parity checking, more

complex decoding of the bit in error and 2% more memory. Current

estimates of memory chip bit error rates imply that this addition-

al complexity is not warranted.

SECDED checking and generating logic is found in the following

locations:

- Processors, where the processor genelates check bits for

all memories it accesses (both PM and EM via the CN buffer),
and checks words fetched from the PM or received via the CN

buffer.

- Coordinator, where the function is parallel to that in the

processors.

- DBM, in the channels to and from the file system.

SECDED logic is not needed in the EM modules, since all EM data
will have check bits when stored, and will have their codes check-

ed at some point after being fetched from EM, usually upon being
read from a CN buffer in a processor.

In addition to the SECDED on all memory data, there are some

simple parity checks. The address-plus-instruction-code sent

through the CN for controlling EM buffers has parity checked at
EM. The contents of microprogram memory in the processor have a

parity bit.

The responses to SECDED and parity errors are as follows:

i. EM module detects parity error on module-number/address/

op-code field sent from processor. The EM module does not return
an Acknowledge on bad parity, so the processor will continue to

send the same request. If the error was a transient, proper

operation will resume. If the error was a hard error, the proces-
sor will hang on trying this request, eventually causing the co-

ordinator to have a time-out interrupt. The EM module sends an

"address parity bad" interrupt to the coordinatar. This would

normally be masked off to allow useful processing to continue in

those cases where the retry works.

2. Processor corrects single error. An interrupt to processe v-

resident software results in the logging of the action in a table

in processor memory.
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3. Processor detects double error in word received flom EM. The

processor halts with interrupt, and the program is discontinued.

Software can restart the program from some plior point, possibly

after system reconfiguration.

4. In all of the above, the requesto_ may have been the CN buffer
of the coordinator used by the coordinator for accessing EM. In

these cases, read "cooldinator" where the previous two sections
say "processor".

6.1.4.2 Scrubbing Errors out of CCD Memory and Dynamic RAM

In the case of CCD memories, errors are not confined to the

reading and writing process. Errors can also arise within the
memory chips. If data is stored in a particular location with no

reference for a long time, such as hours or days, the probability

of errors may become intolerably high. It will be necessary,

therefore, to continually scan through the data base memory (DBM)
correcting all the single-bit errors in order to allow the

survival of the data base for a long enough period of time.

Depending on the magnitude of the soft-error problem, it may be
feasible to use a stronger error-correction code, and thus

eliminate the scrubbing. With scrubbing, the probability of

non-correctlble errols grows linearly with time, the envelope of

pieces that individually have the folm te where e is the number of

erlors in the uncor[ectible case (Figure 6.1). With stronger
error correction, correcting f errors, the curve has the form tf.

e=2 for Hamming plus parity, f can equal any number for a BCH *

code (7). Clearly, the "scrubbing" storage design has more lati-
tude against variations in error rate.

The critical aspect of DBM is the storage of restart files, up to
10 9 bits, for times that presumably could be days. The method of

error correction used will depend on the technology to be used for
the file.

To determine the optimum rate for scrubLing errors out of CCD
memory, we should know both the error rate for spontaneously

occurring errors, and the error rate for the reading and writing

process. For any given error correcting code, there will be an
optimum scrubbing frequency where the two sources of error are in
balance and are a minimum.

In Reference 5, the assumption was made that the CCD memory of DBM
would lose on the average, 1 bit per 3 x 1016 bits shifted. This

error rate was based on preliminary experience reported by Fair-

*Bose-Chaudhuri-Hocquenghem
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child. Since then, the cause of loss of bits has been identified

as background radiation, primarily due to alpha particles coming

from contaminants in the package. More recent quantitative data

is not available. New manufacutring techniques by the vendors

appear to be solving the problems. On the basis of the original

soft-failure rate data, a scrubbing rate of once every seven min-

utes will be enough to keep a 10 _ bit file error-free for one day
with probability 0.999.

Scrubbing in the DBM will make use of hardware and data paths
which would exist even if scrubbing were not necessary. In parti-

cular, the channels to and from the file system have buffers and

SECDED checkers and generators associated with them. Part of the

normal channel/interconnection path capabilities would be a loop-

back mode for diagnostics. All of these capabilities can be
utilized to implement scrubbing as needed. The DBM controller

will schedule blocks (probably 16K words) to the channel buffers

through the SECDED checker/generator and back to the CCD store.

The maximum transfer rate between the DBM and the file system is

expected to be 40 Mbits/sec. At this rate, the entire DMB can be

read in 3.5 minutes. Periods of high channel activity imply

lowered requirements on scrubbing due to natural activity within
the DBM. It is, therefore, reasonable to plan to use some of the

channel capabilities (buffers, SECDED, loop-back) to implement the
scrubbing functions. If DBM blocks are 16K words (a likely result

of CCD organizations), and if the scrub cycle needs to be seven

minutes then the scrub rate is one block every 51.4 msec.

AS the geometries of the individual cells of integrated circuits

shrink, other parts are expected to evidence soft-error problems
similar to that being experienced by CCD parts now. 256 Kbit

dynamic RAMs, which may be considered as a technological alterna-

tive to the 256 Kbit CCD's depending on the design and implemen-

tation schedule), are expected to experience a soft-error rate

large enough to also require scrubbing. The parts currently
planned for the extended memory (EM) have large enough geometries
that the soft-error rate is very low. In addition, the EM does

not contain any long-term data. Hence, no scrubbing is necessary
or planned for the EM.

6.1.5 Error Detection and Correction in the Connection Network

The Connection Network (CN) is of central importance in the imple-
mentation of the proposed FMP. Since the design of intercon-

nection systems are generally not as well understood as processors

and since there appears to be less redundancy, the planned defen-
ses against erroneous operation are described in some detail
below.
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6.1.5.1 Magnitudeof the problem

As described later, single transient errors are self-correcting in
the use of the CN. The only faults that might cause problems are
hard failures (i.e. permanent failures). The discussion below
shows that hard failures can always be detected dullng execution
of user program (and therefore by implication detectable during
confidence tests). Section 6.1.10.3, which follows, shows that
these faults are diagnosable once the job in process has been
aborted.

As to the magnitude of the problem, the CN is built from 39,280
identical LSI circuits. If these circuits have the "normal"

failure rate of 0.1 failures per million hours, the expected MTBF
will be 254 hours, or 33 failures per year. During the entire 10

year design life of the FMP 330 failures are expected. With the

fault detection and isolation techniques outlined below, it is
very unlikely that one of these expected 330 failures will be
undetected.

6.1.5.2 Defense vs. Type of Fault

6.1.5.2.1. _ transient error in the request sent to EM. A
single translent failure in mo--_16 number, address, or opcode

field causes the EM module to detect a parity error, which causes
the processor to retry the operation in question. System software

normally allows retries to proceed unmolested.

6.1.5.2.2. _ transient error in data. This is corrected by
the error correctlng code and loggedT- Computation proceeds_

6.1.5.2.3. Hard failure on the path _ one processor to EM.
This hard fa-_e will eit-her---_ause parity er---r-orsto be de-_ct-_

by the EM or SECDED errors in any words stored. The analysis in

section 6.1.5.3 shows that over half of the addresses sent through
the fault are detected as errors. The result is that such an

error will be detected very quickly.

6.1.5.2.4. Hard failure on the data path from EM to processor.
Only data, w_-_ SECDED, flows o-_e{ t-his path? The ana-lysis of the

next section shows that over two-thirds of the faulty data words

are detected. Thus, such a failure is quickly detected, usually
on the first word transmitted after the failure occurs.

6.1.5.2.5. Hard failule in the path-selecting control io i_
Here, there ar-_ seve-_ _se_ to_nside[.

First, if the wrong path is selected, and if the wrongly selected

EM module has a different number of bits in its CN port number, a
parity error is detected at the EM module. Half the EM modules

will detect such a parity error, so that EM accessing will not go

on for long without the error being detected.
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Second, the correct path is _elected, but with wrong priority, so

that a particular processor is being discriminated against. The
program will continue to execute correctly, but execution time

will be lengthened for certain patterns of access conflicts in the

CN. We believe that analysis will show that such priority

failures are harmless for some programs, including aero flow

codes, but no simulations to verify thls expectation have yet been

done. Such failures can be found by diagnostics. All processors
are sent to fetch from EM, execution is allowed to proceed for a

fixed time, and then it is observed that the processors with

correct results are not the expected set.

Third, the strobe line is falsely high. This will caase the CN

buffer to think that the EM module has granted access when in fact
it has not. If there are no CN delays, the correct wo::d will come

back in spite of the fault. When there are delays, the CN buffer

will pull in "garbage" since no real word is coming back at the

time the false acknowledge says it is. Since the path from this

CN buffer, if blocked, is blocked for at least one CN clock, that

garbage is either all zeroes or all ones, for which the Hamming
error correction identified bit 63 and bit 56 respectively as the
bit in error. Since there is no such bit, the error is immediate-

ly caught.

6.1.5.3 Analysis

As described previously in Chapter 5, the Connection Network is
designed to transmit a sequence of ll-bit frames. The main

purpose of this approach is to reduce the number of wires and the

complexity of the network itself. If the entire message is 33
bits long, then a stuck-at fault will change either 0, i, 2, or 3

bits depending on whether those bits were the same value as' the
bit produced by the stuck-at fault or not. A stuck-at-ONE fault

produces no errors when all the bits were ONE to start with. When

the entire message is 55 bits long, the stuck-at fault jams five

successive bits to the state at which the fault is stuck, produc-
ing 0, i, 2, 3, 4, or 5 errors.

First consider the case that the module-number/address/opcode is
being passed to the EM (33 bits) and the bit of the EM module

number is the same as the value at which the fault is stuck. The

remaining two bits can have either 0, i, or 2 errors. When the

remaining bits are address bits, it appears valid to assume that
they behave as random bits. Hence we have 25% of the time no

error, 50% of the time a single error that is detected by parity
failure, and 25% of the time a double error that is not detected.

Exactly two thirds of the errors are detected. Aften ten addres-

ses have been passed through this fault, the probability of the

error being detected is 99.9988%; after twenty, 99.99999997%.
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2. Take the case as above, except the EM module number bit is

wrong. When parity is checked, at the wrong EM module this time
there will be either i, 2, or 3 errors in the 33-blt package,

again, with probability 25%, 50% and 25%. The single and triple

erl:ors result in parity errors and are detected. Thus, exactly
one half of the errors are detected. After ten addresses have

passed through this fault, the probability of the error being
detected in 99.9% after twenty, 99.9999%, again on the random

assumption for addresses.

3. For the third case, data, the analysis is of the same kind,

but there are more cases Hence, it is easier to present the

analysis in the form of a table for the cases that there are 0, i,
2, 3, 4, or 5 errors. For each possible number of errors, Table

6.2 shows the percentage of time we expect to find such error,

(the binomial distribution) when it occurs, the percentage of time
that this hardware error causes no operational failure (for ex-

ample, a single error is corrected using the SECDED code), the per-

centage of time that this number of errors is detected, and the

percentage of time that a single data word can slip by in e_:ror.

14.6% of the triple errors will be detected, and 85.4% of them

will appear to be correctible single errors and therefore not
detected.

Table 6.2

Single 55-bit Data Word passing through CN with single hard fault

No. bit Occurrence No. Func. Error Error

era'or s Failure Detected Undetected

0

1

2

3

4

5

3.12%

15.62%

31.25%

31.25%

15.62%

3.12%

3.].2%

15.62%

- i

1

31.25%

4.56%

15.62%

0.46%

26.69%

2.67%

i
TOTAL ! 18.75% 51.89% 29.36%
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From the table, we see that the ratio of detected failures to

undetected failues is 51.89/29.36. That is, 64% of all the func-
tional failures are detected. After ten words have passed through

this hardware fault, the probability that the fault has been

detected is 99.9999%, assuming random data.

6.1.5.6 Logical Checks

Miscellaneous logical checks can be considered. The design intent
of these checks is to localize the effects of some error in the

FMP. The following list of checks includes those also listed in

Appendix C in the list of interrupts, plus others.

- Parity checks on microprogram

- Memory bounds checks (optionally inserted by compile,)

- "Uninitialized" word fetched to instruction decoder or

floating point unit

- Illegal opcode

- Detection of unnormalized floating point operand (except

second half of double length floating point)

- Integer overflow or underflow

- Divide by integer zero

- Floating point overflow (either tested for or marked

"unrepresentable", a compile time option)

- Timeout

In addition, there is a bit in the interrupt register reserved for

any miscellaneous logic malfunction checks that will be built into
the hardware. Lock-up of the end-around carry chain _s an example

of the sort of logic error whose occurrence would be reported in
this bit.

6.1.7 Resta[ t

Previous analysis (5)

start dumps is given by

shows that the optimum time between re-

Top t = (2TgTr)½

where Tg is the mean time between failures (intermittent or hard)
that cause an abort, and where T r is the time spent taking one
restart dump and also the time required to load the restart point

and switch to user programming, assumed equal.
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Typical runs are 10 minutes, and typical data bases are 15 x 106

words (5). Since 15 x 106 words are loaded into EM in 0.375 sec,

we have T r not more than about 0.5 sec. Since T_ will be on the
order of i0 hours or longer, we have Top t = (2-. 0.5 36000)%

seconds, or just over 3 minutes. However, the amount of compu-
tation time saved by dividing a typical I0 minute run into three

restartable segments is estimated to be about 0.3% of all FMP
time I. Hence there is little point to providing restart points

within the tyical 10-mlnute run.

Unless restart points are provided by the user, the restart
strategy will be to restart the same task again automatically
under software control. Automatic restart is limited to those

aborts that are probably caused by hardware error, such as parity
errors. Aborts that are likely to be software errors, such as

addressing errors, will not trigger automatic restarts. The

operating system handles automatic restarts, and reports their
occurrence.

The two types of restart dumps mentioned above should be deline-
ated Automatic restart dumps are likely to be a roll-out (with a

later roll-in) of the entire job. In this case, all data space,

variables, flags, et. al. would be dumped to the file system via

DBM. Restart points provided by the user are expected to be more
restricted. The user would be permitted to specify selected data

areas to be affected and to specify when such snapshots are to be

taken. These user selected restart dumps would be much more effi-

cient and cause considerably less load on the system than the auto-

matically generated dumps. In addition, the user will be per-
mitted to insert an alternate entry point in his main program (a

restart point), where appropriate arrays from the restart dumps

would be reloaded. In the initially delivered system, automatic

checkpoint restart transparent to the user will not be included.

Such a facility would be included at a later time.

iTop t is about 200 seconds; T r is 0.5 seconds. At optimum, the
fraction of time lost due to restart dumps is approximately equal

to the time lost due to wasted computation, that is, computation
that ends in an abort. In a 10 minute run there are two 0.5 sec

restart dumps, plus the initial loading of the data base (total
1.5 sec) and an equal expected amount of time lost by aborting

good computation. (1.5 sec. + 1.5 sec.)/600 sec reduces net
throughput to 99.5% of what it would have been if defense against

aborts were not necessary. If no restart dump is taken during the
i0 minute run, the 1.5 sec of data moving is reduced to 0.5 sec.

However, the time lost from wasted computation will triple, since

600 seconds is triple 200 seconds. Hence, the percentage of time

lost is (0.5 sec + 4.5 sec.)/600, and net thloughput is 99.2%

instead of 99.5%. This is a small price to pay for the conven-

ience of not having to worry about restarts.
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Since the intent of on-llne spale components is to provide the

capability of maintaining the desired level of performance through
aucomatlc reconflguratlon, the system software would be able, in

most cases, of automat_cally restarting a job whose execution may
have been interrupted by a hard failure. When the job is a

program with user-specifled restart dumps and restart points, the

most recent restart dump would automatleally be chosen and the

execution would resume at the restart point. For elample, in a

one-hour run involving 500 time steps, it might be reasonable to

specify a restart dump every 25th time step. The restart entry
point would include the relnltiallzatlon of control variables to

states saved as part of the restart dump. The above technique is

particularly appropriate to the aero flow codes, where the computa-

tion converges.

An analysis of the effect of restart on the operation of the FMP,
using the reliability model, is contained in Section 6.2. In that

section, the assumed "restart" time of 6 minutes, corresponds, not

to the T r above, but to the total time spent at the time of

restart, including system software response to the abort, logging
of error, reconfiguration of the system, if any, and running of

confidence (and possible diagnostics as well depending on the type

of error detected). Six minutes seems extremely generous.

6.1.8 Error Lo_@ ing

Where possible, all errors are logged. The mechanism for logging
errols is via interrupt. Both the processor and the coordinator

have three classes of interrupts which can be used for logging.

One class of interrupts reports non-fatal errors (such as single-

error correction of a transient parity error detected in EM).

A second class of interrupts are the programmatic interrupts
(CALLI instruction) which can be used for calling on system

software to log errors. In many cases these may be errors

detected by tests inserted by the compiler into the code stream.

The third class of interrupts is used to log all fatal errors.

Since fatal errors involve some non-correctable situation, these

interrupts are usually directed to the coordinator. In the case

of the coordinator itself, they are directed to the diagnostic
controller and the support processor.

The design intent is to record the memory address and bit number

of bit in error (also called "syndrome") for all SECDED error

corrections and detections. It is likely that programmatic inter-
rupts will report not only the observed error condition, but also

a code which would be used to obtain a llnk back to the original
source code. A table in each memory holds the record of the last

N errors corrected. The size of the error log tables and the

frequency with which they are collected and reported has yet to be
determined.
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6.1.9 Invariant s

Applications software is one of the links in the chain that main-
tains the trustworthiness of the NASF. Although the application

software is outside of the scope of wolk when developing a faci-

lity, it is part of the system seen by the usel and therefore must

be considered when discussing the trustworthiness of a system.

Inclusion of checks on quantities which should be invarient or in

some way well behaved during the course of the computation seems

applopriate. Examples might be:

- Total quantity of air within the mesh (as c_puted from the

appropriate function of geometry and pressure) should change
in accordance with air inflow and outflow at the boundary.

- Any global criterion for convergence should improve monoton-

ically for steady airflows.

- Changes in total energy in the system should correspond to
energy inflow and outflow at boundaries

Discussions are currently under way on constructs for the language
which would make such invariant checking more convenient.

6.1.10 Dia@nostics

All of the FMP shall be diagnosable. Creating diagnostics is

difficult at best, because of its interdisciplinary nature. Ha[d-

wale features for aiding diagnostics must be designed. The diag-

nostic programmer must be expert both in the logic design of the

machine being diagnosed, and expert in programming at the machine
dependent level. Completely automatic diagnostics for all condi-

tions is an unreasonable goal. This project would plan on

computer-assisted diagnostics.

The built-in fault detection mechanisms of the FMP have already

been discussed. In order to meet the desired goals and avail-

ability and MTTR (Mean Time to Repair) for the system, direct and

simple means for diagnosis of the system components is required.
Because of the scope of the system, direct control of diagnostics

from some central point (the diagnostic controlle_ (DC) for in-

stance) is not realistic. A hierarchy of controls will be pro-

vided. In general, every diagnostic interface to the next level

of detail in the system is expected to have a mode of operation
which allows the outer level direct control over setting and

observing any state (bits) in the immediate next level of detail.

For example, the logic in the diagnostic controller (DC) would be
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tested (set DC state including command, run the DC clock, observe
the DC state) by the support processor. The diagnostic control-

let, in tuln, tests the state control logic of the coordinator in

the same way. The coordinator tests its own memory and the state

control logic of each of the processors. The processors and

coordinator jointly check the Connection Network and the EM
modules. The processors will also be able to check each other.

The coordinator also tests the state control logic of the Data

Base Memory controller. The DBM controller then tests the rest of

the DBM including the path to the File System.

Figure 6.2 shows the layered structure of the off-llne diagnos-

tics. Layer 1 is the initial phase of the "hard core", when the

Support Processor is learning to trust the command-accepting
portion of the DC. Layer 2 is the rest of the "hard core", also

imposed by a Support Processor program, checking out the DC and

enough of the coordinator so that the coordinator can be trusted
to execute successfully. Layer 3 runs on the coordinator and

exercises that portion of the FMP to which the coordinator has

direct access. Layer 4 consists of those portions of the FMP to

which the coordinator has only indirect access. The coordinator

must cause the DBM controller and the processor to execute certain

operations in order to get these portions exercised. Some

diagnostics for layer 4 run on the DBM controller and the

processors as an array.

This on-line form of diagnostics is used as needed to isolate or

confirm an error to a replaceable unit (such as a processor). At

that point the system is reconfigured, checked and execution

resumes. If the automatic diagnostics are unable to confirm the
location of a fault, the same controls are accessible to the main-

tenance personnel who can develop custom tests sequences as
required. Note that when the system successfully detects a fail-

ure, isolates it to a system component, swaps in a spare compon-
ent and resumes execution without requiring manual intervention,

the system is defined to be continuously available. Only when
manual intervention is required to isolate a problem and restart

the system is the system considered to be unavailable.

Once a failure has been isolated to a system component, such as a

particular processor, and that component has been switched "off-
line", isolation of the bad component can proceed concurrently

with the resumption of execution of the FMP. These off-line tests

would consist of two types. Some tests will be possible with the

system component still attached to the system. These tests would
allow "in-situ" testing without disturbing the environment in

which the error occurred. Thus, spare system components will be

capable of access to other spare components without disruption of

the on-line portion of the FMP.

In addition to the above test modes, test equipment is expected to

be available to test the removable system components away from the

system.
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6.1.10.1 Level of Performance

One should be aware that there is no single magic date on which

the diagnostics will be "finished". The delivery date for the

diagnostic software will merely mark a time at which the diagnos-

tics achieved have a useful level of accuracy. On that date,
there will be still room for improvement in the diagnostics.

Diagnostic programs should continue to improve as operating

experience shows up unanticipated failure modes and shows the

areas in which the accuracy of the diagnostics can be improved.
The goal is to achieve the highest possible uptime with the least

amount of time lost to either downtime or lost to running diagnos-
tics. It will be important to continue to fund diagnostic develop-
ment at a modest level of effort for the life of the NASF in order

to continually improve the efficiency of the support operations
and to reflect the design updates and changes which are a normal

part of the life of any system.

The initial capabilities of the automatic diagnostics system have

yet to be defined. The automatically executed diagnostics would

detect X% of all possible failures. The goal of this set of auto-

matic diagnostic programs is to isolate faults to the least re-

placeable unit at the FMP level (coordinator or CN card, ploces-
sor, EM module, ...). The diagnostics shall locate the failure to

a single LRU Y% of the time, and shall locate the failure to
within N LRU's Z% of the time. When a failure could be either on

the backplane or on a LRU, the probability of detecting whether or

not it is on the LRU itself or in the backplane behind the LRU
will drop to W%.

The off-line LRU diagnostics (tester programs), shall localize

failures to the chip, or to some number of chips with similar per-

centages. U% of the failures shall be found, V% shall be local-
ized to within N chips, and T% shall be localized to within one

chip or component. All of the above percentages need to be deter-
mined.

6.1.10.2 NASF Computer-Assisted Diagnostic Tools

A diverse set of diagnostics will be implemented for the NASF.

6.1.10.2.1. Support Processor System Diagnostics. The Mainten-
ance Diagnostic Unit, a separate execution unit of the Support

Processor system, can impose diagnostic operation on any off-line

elements of the Support Processor. The MDU can write information

into any fllpflop of the Support Processor, cause the unit to
execute any number of clocks, and then read the state of any

flipflops. Results are then compared to precomputed results.

%
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6.1.10.2.2. Support Processor Peripheral Exercisers. Programs
resident on the Support ploceSsor exercise the peripherals of the

Support Processor.

6.1.10.2.3. FMP Off-line Diagnostics. These diagnostics are used
when the FMP i-s not executing user programs and is considered "off-

line" in terms of production commitments. These diagnostic

procedures execute throughput the FMP depending on their purpose.

The "hard core" of these diagnostic procedures is a program resi-

dent on the Support Processor exercising the FMP via the DC.

During early debugging, the DC will be available before the diag-
nostics have been written, and some diagnostic capability will

exist by controlling the DC manually from the maintenance console.

After the coordinator has been diagnosed (or after confidence has

been gained in the coordinator), most of the rest o)J :RP diagnos-
tics will run in the coordinator. These run much faster than DC

diagnostics do. The analysis portion of all those diagnostics

runs in the Support Processor. The coordinator will check the

viability of each of the EM module controls. The EM modules will
be exercised in detail as part of the CN test.

Each processor will check its memory. CN diagnostics require the
execution of EM accesses from a number of processors acting in

concert. The CN diagnostics therefore occupy the entire array,

just as does a user program.

6.1.10.2.4. Off-line LRU Dia@nostics. These diagnostic programs
execute on the test equ-_ment. Every LRU can be diagnosed to the

chip level, or exercised with sufficient flexibiltiy that the

technician can diagnose to the chip level. The number of
different types of testers which may be required is yet to be

determined. All testers are expected to be program compatible

with each other, so that one language creates tests for all of

them. That test generation language would be linked to the design
data base.

6.1.10.2.5 PAL (Plo@rammin_ Aid for Logicians). PAL is the
language in -W-_ch simpletests can be written on-the-spot for

execution by the DC, or for execution on the B7800 for exerting

control over the array via the DC. Eventually, the PAL programs
would form a library that would continue to be useful after

delivery, especially for the small residue of failure modes which

the automatic diagnostics do not adequately support.

6.1.10.2.6 Analysis of Logged Errors. Tables which contain the
error logs would be periodically collected and provided to a

program which analyzes and summarizes the error activity in these
logs. This program would execute on the Support Processor.

6-21



i (

6.1.10.3 CN Diagnostics

The Connection Network represents a design which is novel when

compared with previously existing circuitry for which diagnostics

have been generated. The diagnostic approach described below
would allow the FMP to isolate faults to the bit and node within

the CN. Since the approach is a successive-refinement technique,
some savings may be gained by stopping the FMP automatic diag-
nostic at the board level (the replaceable unit) and isolating the

failed chip using off-line test equipment.

6.1.10.3.1 Assumptions and _ Requirements. The following
features of the FMP design, and of the CN portion of it, are the

basis for what follows.

- SECDED is checked on the data. The checking is performed

in processor or coordinator

- Parity is checked on the addresses and operation codes sent

from processor or coordinator to a single BM module.

- The Omega network, from which the CN design is derived, has
one and only one path between a port on one side and a port
on another, so that when an error is detected, the path

through the network taken by that erroneous data is known.

- When processor number and EM module number are known, the

operating system can translate these numbers into CN port

number on the processor side and CN port number on the EM

side. In general, errors will be reported by processor
number and EM module number, whereas the diagnostics need to

know physical CN port numbers. This translation needs to be

done not only for CN diagnostics, but also for processor and

EM module diagnostics as well.

6.1.10.3.2 Localizin 9 a Hard Error in the CN. The analysis of
the CN starts with the analy_i_th-6 Omega network. The argu-

ment will then be expanded to the more complex case of the actual
CN. Between port n on one side and port m on the other side,

there is a fixed path. All traffic between these two ports takes

the same path. Between some other ports n' and m' there is also a

fixed path. None or some of the nodes on the path n'-m' are the
same as the nodes on the path n-m. Inspection of the four binary

numbers n, m, n', and m', bit by bit, will disclose in which of

the ten levels of logic in the CN do these paths have common

nodes. By choosing two paths n-m and n'-m' which have some nodes
in common, and finding that the same error occurs in data travers-

ing both such paths, we localize the fault to those nodes.
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Given a particular path from m to n, and knowing which contiguous
levels of the ten logic levels we want to include in some other

path, we make m' different from m for all those bits corresponding

to levels on the left side of the Omega for which the path is not
to be identical, and we make n' different from n for all those

bits colresponding to levels on the right side of the Omega for
which the path is not to be identical.

Presumably the diagnostics will be written using a binary search

strategy. First we run tests in which the faulty path and the

other path have four nodes in common, then tests in which they
have two nodes in common, then one.

In the preferred CN version, there are two Omega networks, not

one, with the result that the path is unique only to within a pair

of nodes, (one in the upper Omega, one in the lower omega) at each

point. Two paths that must intersect in the simple Omega can pass
each other without using the same gates, if one uses the node in

the Upper Omega network and the other uses the node in the lower

Omega network. The CN would be designed to inhibit this redun-

dancy. If the two Omega networks communicate only at the ports (a

version that was simulated on the CN simulator), we use a diagnos-

tic control that disables either the upper or the ower Omega
while the other one is exercised.

If the two Omega networks allow paths to be connected between
upper and lower network at each pair of nodes, then diagnostic

disable/enable controls are needed on both Omegas at all ten node

levels, twenty such signals in all, so that at each node level one

can force a path to stay in the same (upper or lower) Omega net-

work, or force it to jump (from upper to lower or vice versa).
With these controls, all paths can be exercised under the same

diagnostic scheme as described for a single Omega.

The error detection used by the diagnostics is the SECDED check on
words that have been sent through the CN in one direction or the

other, and the parity check on addresses and commands sent from

processors to EM. Now a given SECDED error could be due to an
error on the path to EM during a write, or due to an error in the

EM module itself, or could be due to an error on the path from EM
to processor. The diagnostics must distinguish between these

several cases. A test on EM module M consists of writing into the

possibility of faults in the CN). Whe_ the memory is checked out,

the diagnostics can tell the two directions in the CN by sending
data between the EM module and several different processors. To

make sure the failure is not a write failure if the read appears

to fail, write commands to the EM would be generated from several

processors. Likewise, redundant reading is used to check for
write failures.
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The diagnostics must detect the case that the EM port number is
being erroneously interpreted in an EM access request so that the

fault also causes one to traverse the wrong path. This case is

detected by the parity check at the EM module which covers module

number as well as address and opcode.

6.1.10.3.3 Dia@nostic Generation Scheduling The schedule fo_
creating diagnostics is b0ntralned by the requirements of fabri-

cation, debugging, and system integration. The first facility

needed is the test equipment, with enough of the test equipment
software written to facilitate manufacturing acceptance testing of

the LRUs as they are built. The first LRUs built are the proces-

sor and the DC boards. Fabrication generally follows the same

sequence as the diagnostics: the DC is completed first, the

coordinator is completed before the last processor is plugged in,
EM integration (including the CN) follows successful processor

operation, and DBM is the last item to integrate. However,

because of the number of processors involved, processors must be
among the first components fabricated. On this basis, we see that

the sequence of creation of the diagnostics is

i. Tester and tester programs start first. The first tester

programs written are for DC boards and processor.

2. Processor on-line diagnostics to run on the processor

while the processor is on the tester. This is an early

version of the same processor diagnostic test used for FMP
automatic diagnostics

3. The PAL assembler. This is used to generate tests

on-the-spot by the debugging logicians as they debug the

coordinator, the fanout boards, and the DBM controlle[

4. On-line diagnostic tests are used to verify proper design
and operation of the FMP. The on-line tests a_e used as part

of the acceptance tests.
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6.2 RELIABILITY, AVAILABILITY AND MAINTAINABILITY

The efforts in reliability, availability and maintainability

during this study addressed the following key areas:

• The effects of redundancy and parts quality on the

FMP reliability.

. An updated and refined reliability and availability

analysis of the FMP and the NASF system

• An estimate of the maintenance manpower required to

support the FMP

The redundancy study showed that the use of redundant processors

and extended memory modules and redundancy in the data base memory

provided significant improvements in FMP availability and especial-

ly mean up time (MUT). The level of redundancy studied is now

incorporated in the FMP architecture presented in Chapter 5. The

use of B-2 quality level components versus C level quality was

also shown to make a significant improvement (B-2 and C level

component quality represent levels of quality resulting from dif-

ferent degrees of testing and screening; discussed in more detail

in Section 6.2.3). The refined predictions of FMP (and NASF) reli-

ability are based on the incorporation of these conclusions• The

results of the refined reliability analysis of the NASF are summar-

ized in Table 6.3 which presents mean up time, mean down time and

availability of the three major subsystems of the NASF.

The refined reliability analysis of the FMP considered a range of

failure rates for the LSI memories, as well as a range of improve-

ment resulting from the application of SECDED, a range of inter-

mittent or "soft" failure rates, and a range of efficlencies for

recovery from interruptions. The results of this analysis provide

three levels of reliability for the FMP. A lower bound (or worst

probable case),

probable case).

probable case•

MEAN DOWNTIME

AVAILABILITY

a probable case and an upper bound (or best

The results shown in Table 6.3 are for the

TABLE 6.3

NASF AVAILABILITY ANALYSIS

FMP FILE

MANAGEMENT
SUBSYSTEM

SUPPORT

PROCESSOR
St_SYBTEM

COMPOSITE

14.9 HRS 19,310 HRS 263.0 HRS 14.1 HRS

0.14 HKS 1.9 HRS 0.68 HRS 0.17 HRS

0.9904 .9999 .9974 .9880
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An examination of the FMP reliability analysis results reveals

that the connection network (with no redundancy) has a signficant

impact on the FMP failure rate. Similarly the reliability of the
data base memory becomes a determining factor in the FMP reliabi-

lity if only the lowest probable SECDED improvement factors are
achieved and the failure rates of the LSI memory circuits (256K)

are no better than that assumed for the worst probable case.

Future efforts regarding the FMP should give careful consideration

to these two areas to achieve optimum FMP reliability.

The maintenance analysis revealed that to have a 95% confidence of

meeting the required repair and maintenance actions of the FMP for

any given seven day week, a minimum of 13 maintenance personnel

working five shifts each must be available (65 8-hour shifts).
Ass_ing 21 shifts per week (3 shifts per day x 7 days per week),

the maintenance of the FMP will require an average of 3 persons

per shift, excluding operators, administrative and supervisory

personnel.

6.2.1 Reliability/Mailability Model

A generalized systems model for predicting the reliability and

availability for a computer system includes many elements. Figure
6.3 describes this general model for NASF. There are five major

elements: facility, personnel, software, hardware and miscel-

laneous. While all of these elements impact the ultimate system

availability, the analysis and predictions conducted at this time

consider only the hardware and some interruptions of a "soft" or

intermittant nature contributed by the other elements.

This model, as well as the reliability block diagrams of NASF

elements illustrated later on in this chapter, illustrate the

inter-dependency of the subelements that contribute to the reliabi-

lity of the system under consideration.

@@___$OFTfAN( HANOW_

8UILOING OP[NAIIO_

INPUTPOW(A MAINT(NANC( j
(NYiRONM[NTAL US(R$

CONTROL I

ANAG_

NASF [L£M£NTS CONSIO[N(O

G(N(RAL RELIABILI TY/I

Figure 6.3 General Reliability/Availability Systems Model for NASF
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The NASF hardware includes five elements, (I) the FMP; (2) file

management subsystem; (3) support processor subsystem; (4) the

data communication subsystem and (5) the test and maintenance

equipment. The data communications subsystem consists of a large

number (over 100) of terminal interfaces, modems, networks and I/O
devices. The data communication processors are included in the

support processor subsystem. Failure of any one of the devices or

interfaces in the data communication subsystem has no impact on
the availability of the NASF for the other devices and does not

impact the availability of the rest of the system, therefore the
data communication subsystem portion of the NASF hardware was

excluded from the study.

The availability of the test and maintenance equipment can be

adjusted to a level, through the use of redundant equipment, that

will have little impact on the overall system availability. The
remaining hardware elements of the NASF (I) the FMP, (2) the file

management subsystem and (3) the support processor subsystem, are

addressed in this analysis. Detailed models (reliability block
diagrams) of each of these elements are provided later in this

chapter.

Proglams developed by the Burroughs Corporation to aid in design-
ing fault-tolerant computers were used with the above models to

determine the system/subsystem rellability/availability/maintain-
ability. Details of these programs and definitions of terms are
included in Appendix D.

6.2.2 Redundancy Study

The FMP architecture consists of parallel elements in a number of

areas. Parallelism readily permits the use of redundancy for

improving availability. Redundancy however can also impact equip-

ment and maintenance cost, increase failure rate and frequently
increases the software and operations complexity. An analysis was

conducted to compare the effects of the application of redundancy
to the FMP in three areas: (i) the processors, (2) extended

memory, and (3) data base memory. These areas represent three of
the major areas of the FMP.

Calculations of the mean up time (MUT), mean down time (MDT), and
availability (A), of the FMP were made with various combinations

of redundancy. The level of redundancy used is that discussed in

Chapter 5 This includes 4 on-line processors resulting in a
redundancy of 128 required out of 129 processors available in each

of 4 processor bays; 4 on-llne extended memory modules resulting
in 130 out of 131 extended memory modules for 3 of the 4 extended

memory bays and 131 out of 132 extended memory modules in the

forth bay and a partitioning of the data base memory into 4
sections of which any 2 are required for the FMP to be available.
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Table 6.4 shows the results of this reliability and availability

analysis fo, eight different combinations of redundancy (listed as

Cases I thorough 8). The power of redundancy in improving mean up

time and availability can be seen by reviewing these l esults which

a_e summarized in figu;'e 6.4. The use of redundancy in only one

area makes only a modest improvement in the mean up time and

availability. Use of _edundancy in two areas increases the mean

up time and availability_ somewhat more. The use of _edundancy in

all three areas _esults in a significantly hlghe, mean up time and

availabil ity.

TABLE 6.4

Effect of Redundant Elements on FMP Reliability

REDHNDANT EI_,EME'N'I._ tll'_'%NIJP TIMI_ _ _ T.[M|._
I-_.',(TI:.'NDI'I) DATA _1': (t']_.'/Jl_'_) (H(_II:_)

C;%_: PI_OL"F.'_SORS HEMOI_Y M_:MOKY

AVAI L,AI)Ih[TY

1 NO NO NO 10.2 0.65 .9403

2 YES NO NO .[5.6 0.43 .9730

3 NO YES NO 12.7 0.25 .9449
4 NO NO YES .[6.2 0.72 .9575

5 Y_ YES NO 22.3 0.5! .9878

6 _S NO Y_kq 36.2 0.33 .9908

7 NO Y_ Y_ 23.5 0.92 .9622

8 YES YES YF_ I'[7.9 0.51 .9956

It should be pointed out that the data base used for these

calculations does not include all the factors used in the analysis

reported elsewhe,:e in this chapter. The results presented in this

section should only be used for ascertaining the sensitivity of

the FMP reliability and availability to redundancy.

The conclusion of this study was that the application of redun-

dancy to these three areas to the extent defined, represent a

significant imp|_ovement in FMP reliability and availability. The

predicted reliability and availability values fo_: the FMP and NASF

presented in this chapter are predicated on the use of this

redundancy.
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6.2.3 Component Quality Study

Various levels of component quality are available for fabricating

electl:onic systems. These levels are achieved through the applica-

tion of certain screening and testing procedures as called out in

various government specifications and statements. Levels most
likely to be considered for the FMP are B-2 and C. The B-2 level

J:epresents the vendors equivalent of a number of these screening

and testings procedures including a 168 hou_ burn-in. The C level

has less stingent tests and no burn-in but is done specifically to

the government specifications (See reference [9] fo_: more
information).

The effect on FMP reliability of using B-2 level versus C level
quality components was investigated. Table 6.5 presents these

results. Four cases were analyzed. The quality level was varied

for the FMP with non redundancy and with the level of redundancy

presented in section 6.2.2 above. It is noted that the higher the
Mean Up time the greater the iapact of component quality. The

conclusion of this study is that if a high reliability in terms of

mean up time is desired, higher quality (B-2 level) components

should be used. The predictions of the FMP and NASF reliability

and availability presented later in this cahpter are predicted on
the use of B-2 level quality components.

Table 6.5

Effects of Component Quality on FMP Reliability

QUALITY MEAN UP MEAN DOWN
CASE LEVEL REDUNDANCY TIME TIME

(HOURS) (HOURS)

AVAILABILITY

1 B-2 NONE 10.2 0.65 .9403

2 C NONE 8.9 0.68 .9296
3 B-2 YES 117.9 0.51 .9956

4 C YES 75.0 0.51 .9932
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6.2.4 FMP Reliability and Availability P,:edlction

Since the FMP is the most complex element of the NASF hardware and

since the concept under consideration involves highly state-of-the-

art technologies, a more detailed analysis has been conducted on
this element. As described earlier, a number of factors have been

considered in the FMP analysis. The value of these factors are

varied over a range to provide an upper and lower bound as well as

i
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probable values for the reliability and availability. Figure 6.5
shows the rellability/availabillty block diagram used for the FMP.

In addition to the redundancy shown, a B-2 quality level (in

accordance with MIL-HDBK-217B) [9]was assumed for the integrated
circuits and 6 minute recovery time assumed for manual operator

restart. The mean times to repair (MTTR) are based on past exper-

ience and the estimated complexity for isolating and correcting
a failure in the various elements.

Figure 6.5 points out the major redundant elements of the FMP. It

should be noted that no redundancy is shown in the connection

network. The reliability/availability analysis assumes a single

layer network. The connection network presented in Chapter 5, is
double layer network. A double provides some unknown level of

redundancy since one of the purposes of the double layer is to

provide alternate paths where blocking occurs between the pro-

cessors and extended memory. At least some failures will appear

as blocking to the network. Therefore some degree of redundancy
(or fault tolerance) is available in the double layered network.

Since the degree of redundancy from the double layer network
cannot be identified and taken into consideration in these

analyses, a single layer network and the component count of a
single layered network was assumed.

The failure rates of the individual FMP elements were determined

by using a tentative parts list for each element. The quantity

and failure rates for each component are then applied to straight
forward calculations which result in the element failure rate (or

mean time between failures). Appendix E contains the figures
listing the data and the resulting element failure rates. The
failure rates of these elements and their estimated mean time to

repair are then used with the DESIGN Program, described in

Appendix D, along with other factors to be described, to predict

the FMP reliability and availability.

Not all of the factors that impact the reliability and availabi-

lity of the FMP can be readily delineated. Four factors were

selected for which a range of values could be projected and used

for the FMP reliability predictions. These four factors which are
discussed in the following sections are:

(I) LSI Memory Failure Rate
(2) SECDED Improvement Factors

(3) Ratio of Permanent Failures to Intermittant Failures

(4) Recovery Efficiency

6.2.4.1 LSI Memory Failure Rates

Actual field data on LSI memory failure rates is relatively

sparse. Some data is available on 16K devices [8]. Reliability
models such as those in MIL-HDBK-217B [9] for predicting device

failures generally do not hold for significant increases in com-
plexity and density. A worst probable case (lower bound) failure

6-31
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rate may be assumed by using the conselvatlve estimate of .4

failure per million hours (FPMH) for a 16K device which is equiva-
lent to the failure rate of four 4K devices (which have an

accepted failure [ate of .I FPMH). Using this same philosophy,
lower bound failure rates for the 64K and 256K were set at 1.6

FPMH and 6.4 FPMH respectively.

For an upper bound (best probable case), a value of .i FPMH was

set for all three memory devices. Curves showing the improvement

of MOS memory devices failure rates with maturity tend to be

asymptotic to a value in the range of .i FPMH regardless of the

density [8].

The most probable failure rate was determined using the model in
MIL-HDBK-217B for the 16K device and then doubling that value for

each quadrupling of memory sizes. This process results in failure
rates of the 16K device being .32 FPMH, the 64K device being .64

FPMH and the 256K device being 1.28 FPMH.

V

J

6.2.4.2 SECDED Improvement Factor

Improvements in reliability of the FMP are made through the appli-
cation of Single-Bit Error Detection and Correction and Double-Bit
Error Detection (SECDED) in the FMP memories. The mathematical

model discussed in Appendix B of reference [2] determined that

gains could vary from a lower bound (worst probable case) of 2 to

an upper bound (best probable case) of 164 for 16K, 327 for 64K

and 653 for 256K memory packages. These two bounds represent the
extremes of the probable SECDED improvement. It is anticipated

that the real value will fall somewhere within this range. For

the purpose of this analysis a value of 50 has been selected as

being the most probable SECDED improvement factor.

The SECDED improvement factor is applied to the reliability anal-

ysis by direct division of the mem6[y devices failure rates by the

improvement factor. Note that application of the improvement
factor to the memories circuit alone, however does not consider

that SECDED also corlects transient error that may occur from

other sources. For example, transient single bit errors occuring
in the connection network, or due to software errors or due to

noise problems in data being transmitted to a memory may be cor-
rected through SECDED.

6.2.4.3 Ratio of Permanent Failures to Intermittant Failures

Burroughs field data has shown that the ratio of the mean time

between permanent failures (MTBF(P)) to the mean time between

intermittent failures (MTBF(1)) is estimated to vary over the

range of about i0 to 1 to 1 to I. These values have been selected
for the lower and upper bound and the ratio of 5 to 1 selected for

the most probable bound. The value of 5 to 1 for the

MTBF(P)/MTBF(I) corresponds to the assumption that 5 out of 6
failures are due to intermittents.
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6.2.4.4 RecoveryEfficiency

The FMPlike other large systems should be able to automatically
recover from intermittant failures and in some case permanent
failures. The system recovery should be designed with the goal of
being 100%efficient, that is to say that 100%of the time after
an interruption of the system automatically reconf{gu,:es and
restarts with negligible downtime. Unfortunately most systems do

not enjoy this idealized goal. Experience shows that recovery

efficiency varies and ranges in the levels of 70% to almost 100%.
These levels (70% and 100%) were selected as the lower and upper

bounds and a level o£ 80% selected for the predicted level.

6.2.4.5 FMP Reliability Analysis Results

The values of the various factors discussed above were used as

inputs to the FMP model and reliability analysis program. Figure

6.6, 6.7 and 6.8 present the input data and the calculated results
of this analysis for the lower bound (worst probable case), the

probable case and the upper bound (best probable case). The input

data include the following:

6-34

I) Name: Abbreviated name of an FMP element

2) R: Minimum number of elements required for
FMP to be available.

3) N: Number of identical elements available

4) MTBF(P): Mean time between permanent failures

5) MTBF(1): Mean time between intermittent failures
6) SPFM: Single point failures (not used in this

analysis)

7) DRT: Device repair time
8) SRT: Single point repair time (not used in this

analysis
9) RE(P): Recovery efficiency from permanent type

failures

i0) RE(I): Recovery efficiency from intermittent type
failures.

Ii) DMRT: Device manual recovery time (assumed to be

.I hours for the FMP)
12) MTBME: Meantime between maintenance errors (not used

in this analysis)

13) MTBPMI Mean time between maintenance actions (not
used in this analysis)

14) MTTPM: Mean time to perform preventive maintenance

(not used in this analysis)

The output data consist of the following three items:

I) MUT: Mean up time
2) MRT: Mean repair time (which for the system being

analyzed will be the same as the Mean down time (MDT)

3) Avail: Availability - Percent of time that system or

required elements are available for use.
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0

Unless otherwise noted, all times are expressed in hours. More

discussion on these terms can be found in Appendix D.

Examination of this data shows that the two major areas having

greatest potential impact on the FMP reliability are the connec-
tion network (CN) and the database memory (DBM). The connection

network, which for this analysis is assumed to have no redundancy,

has the lowest MUT for both the most probable case and the best
probable case. In the worst probable case the connection network

has the second lowest MUT, the lowest MUT being that of the data

base memory (DBM). Two factors contribute to the low MUT for the

DBM in this case; the failure rate of 6.4 FPMH, and a SECDED

improvement factor of only 2.

Conclusions from this analysis indicated that redundancy should be

implemented for the connection network. Fur thermore, special
attention should be paid to the design and application of SECDED

to the data base memory and in obtaining LSI memory circuits with

a failure rate significantly less than 6.4 FPMH.

Table 6.6 summarizes the reliability analysis results for the FMP
and shows the values of the factors considered in the different

cases.

%

6.2.5 Support Processor and File Management Subsystems

Figures 6.9 and 6.10 show the reliability block diagrams of the

support processors and file management subsystem. The high level

of redundancy in these systems contributes significantly to its
overall reliability. For the purpose of this analysis, the
failure rates of the individual models include hard and inter-

mittant failures. The failure rate data used for the support

processor elements and the disk packs and file control ements of
the file management subsystem are obtained from current field

experience on similar systems. The equipment that might be used
in the 1980's, though faster and of greater capacity than that in

the field now, is expected to have reliabilities and
availabilities that will equal or exceed that of these current

systems.

Figure 6.11 lists the data used for support processor subsystem.

Computed outputs for the mean up time (MUT), mean down time (MDT),

availability and the meantime between interruptions for the indi-
vidual items and the total support processor subsystem are shown

in Figure 6.12. The CONFIGURE program described in Appendix D was

used to generate these results. An example of actual field data

of a similar system is provided for comparison in Figure 6.13.
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I

Figure 6.10 File Management

Block Diagram
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Table 6.7 lists the data used for the reliabillty/availabillty
analysis of the file management and the subsystem results of this

analysis. The MUT and MDT use for the mass memory are based on

design specifications.

Table 6.7

File Management Subsystem Reliability
Data and Analysis Results

ELEMENT

File Control

Disk Packs 3

I II R I N MUT (HRS) MDT(HRS) A

I 19,310 ! i' ' 1.9

! ,
! 6 250 _ i .0
f

_ _ ......

! i 5,246 I .8

i ........ j
I

System Total 1 19,310 1.9 .9999

Mass Memory 1

R = Required number of elements
N = Number Available

MUT = Mean Up Time
MDT = Mean Down Time

A = Availability

(Data from experience on similar equipment oi: design
specifications)

6.2.6 Maintenance

6.2.6.1 Maintenance Philosophy

Maintenance of the FMP should be based on a remove and

replace-with-spare philosophy at the lowest replaceable unit (LRU)

level as determined by the maintenance analysis. Repair of the
replaced failed items would be off-line using subassembly testers

available at the sit_. The FMP should be equipped with fault

detection circuits that, in conjunction with system confidence

checks and diagnostics, would provide indications of an existing
problem via a printout or status display. Errors can be logged

automatically giving appropriate file information for isolation of

failure(s). Upon detecting a fault, the maintenance personnel can
initiate the isolation action required (hardware/software/manual

diagnostics) to locate the fault to the malfunctioning subassembly
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within an element or LRU. A replacement subassembly will be with-

drawn from spares and substituted in the FMP element• Before

restoring the element to an active status, a confidence check
would be performed to determine if the failure has been corrected.

The malfunctioning subassembly can then forwarded to the appro-
priate repair facility (site, depot or factory), upon repair at

the site, the LRU can be returned to the spares stock•

The remove and replace philosophy requires that adequate spares be

stocked on-site to preclude degradation of the FMP performance

parameters (MUT, MDT, Availability). The actual quantity and
types of spares required and the lead times should be determined

from their actual usage in the equipment and their individual
failure rates.

Preventive maintenance of the FMP consist of periodic testing of
the power supplies, checking of rotating memories and general

housecleaning. This effort would be minimal, and most of it can
be accomplished on-line.

6.2•6.2 Maintenance Plan

Upon detection of a failure the system diagnostic can be auto-
matically initiated to determine the malfunctioning element• The

system automatically reconfigures under program control replacing

the malfunctioning element if it is redundant. Maintenance diag-
nostics can be initiated to isolate the failure to the mal-

functioning subassembly for removal and replacement by a spare and
the process manually restarted if the failed element is not

redundant. The design approach being investigated would allow

removal/replacement of redundant modules with power-on. This

approach would tend to reduce the equipment downtime by allowing
more rapid access to the failed items.

Since SECDED is applied to the memories, most single-bit errors

will not cause any equipment failure. When the log shows that a

single bit is stuck, the system could be shut down when desired in
an orderly fashion for maintenance action. This .feature would

provide a minimum loss of productive time. The information stored

in the log could then be processed on an as-called basis for

location of the failure or error. The system diagnostic would
utilize the following means for error detection and error
correction:

6-46

a) Processor Module

. Parity check on Microprogram Memory

• Reasonableness checks (See Appendix C for
detailed list)

b) Data Base Memory

• Error correction with logging of errors

for detecting repeated faults



°

c)

d)

e)

f)

Connection Network

• Error correcting codes as part of the data plus
parity checks on address and instructions to

memo ry

Coordinator

. SECDED in the memory

. Reasonableness checks (See Appendix C)

Memories

SECDED

Power Supplies

• Detection of over voltage on input line will

cause the FMP to automatically shut down to

prevent damage to the equipment

Detection of voltage out of range on output

%

t

6.2.6.3 Personnel Support Requirements

Detection, isolation, repair and checkout of a failure in the NASF

System requires individuals with knowledge and experience of

digital processing equipment. These individuals should have a
thorough understanding of electronic principles, systems logic and
solid state component operation as applicable to high speed

digital data processing equipments• They should also have a

thorough understanding of electronic test equipment operation, and
reading schematics, logic, wiring diagrams and blueprints. Their

background should include, at a minimum, a high school education
and training in an advanced electronics digital data processing

and computer maintenance course. Maintenance personnel should

possess experience in the installation, repair, overhaul and
modification of high speed digital data processing systems and be

familiar with the test equipment applications associated with the

accomplishment of these tasks.

An analysis has been conducted to ascertain the level of manpower

required to provide for repair and maintenance of the FMP. The
results of this analysis shows that to have a 95% confidence a

meeting the required actions within the times allocated a minimum

of 13 maintenance personnel, cach working 5 shifts per wcck arc

required.

Estimates of the personnel support (labor hours) requirements for

the NASF System provided in this section assumes the type of main-

tenance personnel described above. The estimates are based on 95%

upper confidence bounds applied to element failure rates and the
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weighted average repair time of a given subsystem. (An upper
confidence bound of 95% applied to the element failure rates means

that for 95% of the time the failures of a given element will be

within this bound.) The basic steps followed to determine these
estlmate_ are:

a. Determine the average number of failure expected in
a 168 hour operational week for a given element in

a given subsystem.

b. Determine the expected number of failures at the

95% upper confidence bound for each element and the

corresponding subsystem total.

c. Determine the weighted average equipment repair time
for the given subsystem.

d. Determine the labor hours expected at a 95% confi-

dence level to be expended in performing corrective

maintenance (CM) (on-line-localization, isolation,
LRU removal and replacement).

e. Estimate the labor hours for performing preventive

maintenance (PM).

f. Estimate the labor hours for LRU repair off-line

(bench repair).

g. Estimate the total labor hours required per shift.

Steps a and b

Table 6.8 shows the average number of repair actions expected

weekly as computed for each equipment in the FMP, File and Support
Processor subsystems. The weekly (168 hours) period was chosen

because it best satisfies operational conditions. The smallest

value of n; that satisfies the Poisson formula condition given in
equation 6.1 determines the maximum number of repair actions at

95% confidence for the jth element.

e-mj __ (mj) i > 0.95
it (6 i)

i=0

where n_ = t_t = _eragenumberofrepairactions
MTBFG) _rjthelementintime t

Table 6.8 shows the input values of Qty(j) and MTBF(j) for each of

the j elements and the calculated values m; and n; for t=168

hours. The subsystem total for the FMP subsystem ;hows an average
of about 11.5 repair actions per week, but at a 95% confidence

level there will be no more than 33 repair actions per weeks. The

corresponding values for the file and support processor subsystems

are about 12 and 37 repair actions per week for the average and
95% confidence bound respectively.
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Step_

Determine the weighted average equipment repai_ time for the given

subsystem.

The mean time to repair for each of the j elements is tabulated in

Table 6.8 as MTTR(j). The mean time to repair a subsystem, MTTR,
is obtained as a weighted average of the MTTR(j). The weighing is

done using the quantity Qty(j), and inversely as the mean time

between failures, MTBF(j), of the jth element since these deter-

mine the frequency with which repairs of the jth element comes up

for !:epair._c__.The appropriate formula for the subsystem mean timeto
repalr MTTR, for corrective maintenance is:

E MTT__RRUL_gt__QLK(D_

MTBF0)J (6.2)
MTTR = -__._ Qty0)

j MTBFO)

When the values in Table 6.8 are used for j=l to 10, the weighed

average equipment repair time (for corrective maintenance) for the

FMP is 0.618 hours, and for j=ll to 20, the mean time to repair

for the file and support processor is 2.2 hours.

Steps d thru

A good approximation to the distribution of mean repair time is a
normal distribution. Thus, it then follows that the general

equation for determining the manpower, personnel hours PCM, for
corrective maintenance expected to be expended at 95% confidence

can be expressed as:

( )Pcm = M--_--R + _ n P
(6.3)

P = Number of maintenance personnel

n = Number of repair actions

= Standard deviation of repair times

= 0,25 hours (as determined from observed data

taken on similar equipment
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Table 6.9

CORRECTIVE MAINTENANCE LABOR HOUR ESTIMATES

Subsystem
PCM

FMP

Support Pro-
cessor and File

Systems

No. of Main- No. of Labor Estimates at 95%

tenance Per- Repair (Maintenance Personnel

sonnel, (P) Actions wk/(n) .....Hours/Wk)£ (PcMI______

1 9 6.7949

2 16 23.0630

3 8 18.3193

Subtotal: 33 48.1772

1 i0 23.3019

2 19 88.6648

3 8 56.2929

Subtotal 37 168.2596

l

Experience shows that 27.9% of all equipment failure corrective
action is performed with one (I) maintenance person, 49.6% with

two (2) maintenance personnel, and 22.5% with three (3) mainten-

ance personnel. Substitution of these values for P into equation
6.3 yields the results in Table 6.9 .

The results shown in Table 6.10 are based on the following assump-

tions: (i) previous field experience for repair-off-line
utilizing a subassembly tester indicates a two hours repair time

per equipment failure. (2) The amount of time selected for

preventive maintenance (PM) are also based on previous field
experience. However, it is to be noted that the final time values

for PM can be better determined once the PM procedures are

devloped.

The final results are adjusted to consider the efficiency of the
personnel. An 80% personnel efficiency is assumed to cover con-

tingencies such as set-up times, breaks, report writing and other

documentation requirements, etc. These results indicate that,

with a 95% confidence, thirteen (13) maintenance personnel can
adequately support the NASF Computing System working 5 shifts each

during a 21 shift, seven day week, or an average of about 3
persons per shift.

6-51



,,_w°;

Additional personnel should be considered to account for time off
and shift rotation within established personnel policies. The

above manning level does not include those personnel required for

supervision, administration, software support, system operation

and maintenance of the data communication displays, terminals and

other I/O equipment.

TABLE 6.10

ESTIMATED NASF MAINTENANCE LABOR REQUIREMENT

Labor Required

Maintenance (Maint. Personnel

Subsystem Activity Hour s )

FMP CM 48.18
PM 14.00

Repair Off-Line 66.00

Subtotal: 128.18

File and CM 168.26

Support PM 28.00

Processor Repair Off-Line 74.00

Subtotal :

TOTAL

At 80% Efficiency

270.00

398.44

498.05 hours/week

6.2.6.4 Sparing Considerations

An important condition to the acquisition and maintenance of any

system is the philosophy of sparing parts, assemblies, and sub-

systems to support the specified system operational requirements.

Sparing considerations are developed as a result of an overall

logistics support study which takes into account requirements such
as:
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- System MUT, MTTR and Availability,

- Redundancy considerations,

- Recovery time of [epairables,

- System maintenance philosophy,
- Hardware complexity,

- Corrective/Preventive maintenance skill requirements,
- Site, depot o3[ factory repair,

- Special and standard test equipment or tools,

required at the site, depot or factory locations
- Storage facilities (space, environment, etc.),

- Distance from spare part supply points,

- Turn-around time for repair on site, depot and factory
("Pipeline" time),

- Packaging fo_ long term storage,
- Shelf life,

- Long term availability of discrete parts due to technology
advances, etc.

- Cost tradeoff studies of repair at piece part versus
assembly/subsystem level on throwaway,

- Identification of wear out items replaced at specific
intervals.

The maintainability characteristics of any system backed up by the
reliability, availability and performance _equirements determine

the system effectiveness, logistics supportability and the cost of
system maintenance.

As new systems are developed, they become more complex with re-

spect to the sophistication of new state-of-the-art circuitry and

the application and density of circuitry within equipment ele-
ments.

Complex and large systems generally have inherently low mean up
times, therefore, a viable logistics support plan becomes a prime

factor in the operation of such systems.

As va¥ious elements of the NASF system become defined, final part

types, part quantities and catagories ultimately selected and
circuit packaging determined, a realistic and comprehensive logis-

tic support/spares study can be performed on the FMP support
equipment.

Spares are determined through a quantitative analysis which basic-

ally utilizes item failu, e rates, item population in the system
and applies various confidence levels to meet the needs of the

customer requirements and the established qualitative and quanti-

tative maintenance requirements. Burroughs maintains computerized
programs for establishing at the desi1_ed confidence level spare

part support quantities. These programs can be used to establish

the spare quantities for the FMP once the subsystem becomes better
defined.
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Spare parts selected for site maintenance consideration fall into

three basic categories, namely, electronic and mechanical piece

parts, subassemblies, and assemblies classified as site repairable
in accordance with the established maln_enance philosophy.

Typical part types in these three categories are:

Piece Parts: Fuses Connectors

Integrated Circuits Pin & Socket contacts

Diodes Indicator lamps & LEDs
Resistors Blowers

Capacitors Drive Belts
Switches Motors
CRT's Misc. parts (wire, etc.)

Subassemblies: Individual Processors

Printed Circuit Cards (logic)

Power Supply regulator cards
Miscellaneous Printer subassemblies

Misc. Tape, Disc & Display subassemblie_

Assemblies: Power supplies (main)

Keyboards
Miscellaneous Printer assemblies

Misc. Tape, Disc & Display assemblies

%

Spare parts required for depot or factory repair support will be
dependent on specific items identified through future support

efforts. In addition to sparing parts required for consumption at

the depot or factory level, additional items will be required to
maintain site levels of high value and/or non-reparable items for

maintaining the "pipeline" flow to the site.
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CHAPTER 7

FMP TIMING SIMULATIONS

7.1 FMP MODEL

The FMP Model (Figure 7.1) includes Extended Memory (EM) Connec-

tion Network (CN), Coordinator (CR), and one or more processors

each including one Execution unit (EU), and two memory modules.
Synchronizing signals between CR and EU's are modeled, as are the

effects of CN and EM characteristics on EU instruction times.

The time resolution of the simulation is a single processor clock,
nominally 40 ns for a 25 Mhertz clock.

The simulation is detailed to the single processor and coordinator

(CR) instruction with sufficient accuracy in the models of the
various functions to give good estimates of the execution times of

actual code samples. The detail required is greatest in the

processor, where it nearly equals that to which the design has

been carried. The coordinator (CR) is modeled less completely,
but well enough to model instruction-level execution of code with

reasonable accuracy.

The EM and CN are modeled only to the extent that their perform-

ance parameters are accounted for in the timing of the instruc-
tions which use them.

7.1.1 Processor Model

Figure 7.2 shows the functions modeled in the processor. The way

these functions perform is best shown by tracing the steps in

executing instructions.

It is necessary in some cases to distinguish between functions
performed by the simulator, which use no simulation time nor

resources, and are indicted by (S), and the functions which take

time and/or resources and which correspond to actual hardware

functions, indicated by (M).

The simulated code file (S) contains one entry for each instruc-

tion of the actual code modeled. The PCR (S) points to the next

entry of the simulated code, and this entry when fetched (S)

points to a coded description of the instruction (S). This des-
cription is fetched and decoded as soon as the previous instruc-

tion starts executing. The coded information includes:

(i) Instruction length (code space taken)

(2) CU synchronizing action, if any
(3) Resources used

(IP, FP, DM, CN buffer/CN)
(4) Time of use of each of resources

(5) Reporting information if a floating point arithmetic
instruction.
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After fetching and decoding (S) the instruction, the actual

behavior of the processor in fetching, decoding, and executing the

instruction is modeled.

7.1.2 program Fetch

The processor memory is modeled as static memory, with three
clocks access time, that is, new data is available at the output
three clocks after a new address is supplied, and remains avail-

able statically so long as the address is held. The actual pro-

gram address register is not modeled, but it is assumed that the
next program address is supplied as soon as the previous program

word is fetched to the program stack, so the next program word is
available three clocks later. The initiation of program fetches

is thelefore driven by the availability of space in program stack
(M). The space that was occupied in program stack by an instruc-

tion (M) (as specified in its description) becomes available as
soon as it starts executing, and when the total space available in

program stack is enough, a code word (M) is transferred to it, and

the next program fetch is initiated.

The above program fetch sequence is subject to two exceptions_

When a jump or a conditional branch is elecuted, the program stack

is marked empty, and the progran| fetch then in progress is restart-
ed, so that the new program word is not available for execution
for three clocks. Furthermore, this action itself does not begin

until the branch instruction has been executed. The latter also

applies for a test-and-branch instruction when the branch is not
taken; the next instruction cannot start executing until the test

is completed. Alternatively, the model may be altered so that

program fetch delay occurs when the branch is __not taken, with

program execution from the new address continuing without delay
when the branch is taken.

The second exception case for program fetch can occur only when

the model of processor memory is made homogeneous, that is, both
modules are shared between program and data storage. In this case
a data access to one of the modules aborts the program access then

in progress, and the next program word froln that module is not
available for two memory cycles (6 clocks). If the data access

and the transfer to program stack are simultaneous, the transfer

is completed without delay, so the maximum program fetch delay
which can be caused by a single data access is five clocks. The
module for data access is selected at random (S). When memory is

used for data fetch or store, it is treated as a single resource,

not accessible when busy, even in the case that both memory

modules may be used for data storage and are independently access-

ible. This is because the memory addresses are always modified by

an integer register, so tl _ actual address and thus the module to
be used cannot be known ,.til after the instruction starts

execution.
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When memory is modeled as homogeneous, program fetches alternate

between the two modules, but only a single program address regis-

t,_r is assumed, so the program fetches from the two modules are
initiated simultaneously, and the next fetch from the first module
cannot b_ initiated until the fetch from the second module is

complete.

7.1.3 Instruction Execution

After the instruction is decoded (S), and the resources needed and

the times when their use starts have been determined, the score-

board (M) is examined to determine whether the instruction must be

delayed. The scoreboard, updated when each instruction starts
executing, contains the time at which each resource will be releas-

ed. If it is found that there will be a delay, further (S) proces-
sing waits until the resources are available. Then the content of

Program Stack is examined, and if the operator syllable(s) are not

present, the instruction queues (S) until the next program fetch
makes the syllables available. When the instruction starts, if

its use of any of the resources is specified as delayed, then that

part of the instruction must wait in the proper Holding Register

(M). If the required Holding Register is in use by the prior
instruction, then the start of execution is delayed until the

holding register is available.

Note the reversal of the actual order of operations: The instruc-

tion cannot actually be decoded until it has been fetched, and any
waiting for resources must follow this. However, we wish to know

how much the execution of code is delayed by program fetch, so we

do not count any fetch time during which the instruction would
have been waiting for resources anyway.

The actual processor probably would not use a scoreboard as above,

because this mechanism for controlling instruction overlap is not
fully effective when the execution time for instructions is data

dependent, as will probably be the case for arithmetic operations.
A mechanism similar to the holding registers would be used, where

the various parts of the instruction can wait for their resources.

An exar 21e of the difference in timing in the two cases is shown

in the timing charts of Figure 7.3. Here the instructions using

the Integer Processor (Numbers 2, 3, 5) start much sooner in (b)
than in our model (a). This is because when an instruction enters

the queue, the next instruction is available for decoding, whereas

in (a), when an instruction is delayed by the scoreboard, the de-

coding hardware is tied up until the instruction starts. However,

note that in both examples the Floating Processor is busy full
time, and the FP instruction (4) starts at the same time in both.

It is reasonably clear that the queueing mechanism will allow more

instruction overlap in some sequences, giving a reduction in

execution time, but such cases will be uncommon and only a small
reduction in total execution time can be expected.
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The IP, FP, DM and CNB resources are modeled, and utilization of
these resources is reported. Program memory (PM) is modeled as

two separate resources when the memory is homogeneous, but is

shown to be utilized only during the memory cycle time actually
used for access. That is, neither cycles aborted by data access

to that memory, nor the time spent holding output while waiting
for space in the program stack are counted as program memory
utilization time.

A running count (S) is maintained of the number of instructions

executing, this count being updated whenever an instruction starts

or ends. Special resources (S) are used causing reports of the
percentage of the simulated execution time that i, 2, or 3

instructions are executing concurrently.

7.1.4 Synchronizing Action

The state of synchronization of the processor is described by the

state of two flipflops (M): I GOT HERE (IGH), which is set by
certain instructions, and ENabled (EN), which is set whenever the

processor is enabled, and when reset causes the processor to stop

executing before the next instruction. A logic level formed by
the logic combination (IGH or _-N), ANDed with the same logic level

from all other processors is transmitted to the coordinator (CR).
The IGH is reset when a GO pulse is received from the CR and EN is

set by an ENABLE pulse from CR (M). Cable delays for these

signals are zero from CR to EU, and three clocks from EU to CR,

because the system clock is assumed to be in CR, so that signals
from CR travel with, and arrive at the same time as the

corresponding clock.

The uses of synchronizing action are as follows: Certain instruc-

tions (FETCHEM, BDCST, HVST, SHIFCN) involve exchange of data
through the CN, under overall control of the CN by CR, with clock-

ed, synchronized data transmission. Therefore, all processors

must be at the proper point in the instruction (or disabled)
before the data transmission can begin. Such instructions set IGH

during execution and then wait for GO from CU before completing in
synchronism across the array. Since all such instructions use the

CN Buffer (CNB) unit, and the data exchange is via the data buffer

internal to CNB the processor can continue executing succeeding
instructions as soon as IGH is set, provided that none of them use

CNB or set IGH. Certain other instructions (WAIT) set IGH and

then wait for GO before starting the next instruction. Obviously,

such an instruction cannot start if IGH is already set, but must
wait for the GO to reset IGH before going on. The STOP instruc-

tion resets EN and then stops instruction execution until the
ENABLE from CR again sets EN.
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7.1.5 External Access Model

The CN buffer (CNB) unit contains registers for the Extended

Memory address, which are loaded from Integer Registers, and a

Data Buffer to hold data which is to be transmitted through the CN
or which is received from it. The data buffer in CNB may be empty

or full, and in either case may be busy or available. However, in

our model, the buffer is always available when CNB is available,

and is then either FULL or EMPTY depending on the last CNB instruc-

tion executed. The CNB functions are designed so that those which

transmit data through CN (STOREM, HVST, SHIFTN) specify the pro-
cessor source for the data (DM, FP register, one or more IP regis-

ters), and so appear in several versions. However, those instruc-

tions which receive data from CN (LOADEM, FETCHEM, BDCST, SHIFTN)

do not specify a processor destination, but leave the data in the

FULL data buffer in CNB, from which it is transferred by a second
instruction (-REM) which specifies the processor destination. The

reason for this is that there may be appreciable delay in using

the CN, either by conflicts in CN or at EM for LOADEM, or by

waiting for other processors in the synchronized CNB instructions.
In either case, the separation of the CNB action and the transfer

to processor destination allows the compiler to save execution
time and mask the delay time by inserting the CNB instruction as

early as possible, followed by as many other instructions as pos-

sible before calling for the data.

A CNB instruction (or -REM, which also requires CNB to be avail-

able) cannot start while CNB is still busy with a prior CNB
instruction. In our model, succeeding instructions, therefore,

must also be delayed, although in a queueing model, having a

register for queueing CNB instructions, succeeding instructions

not requiring any of the same resources might continue execution.

7.1.6 Branching

we model only the execution time of instructions, and the model

does not "know" what they do, nor do the modeled instructions

contain any data or addresses. Therefore, branching must be con-

trolled by special code words in the simulated code file which do
not model any actual instructions but contain coded branch control

information to be used by the simulator. Such words can be insert-

ed anywhere, and their processing does not take any time nor

resources. However, every time a branch is executed, the simulat-

ed code addresses are reported, in order to allow tracing the
execution of the first simulated code. The branch controls oper-

ate as follows: The first time a branch control is executed, a

processor subroutine is initiated to process it. The code word

contains algorithms to specify:



(a) The branch address, which maybe dependent on processor

number if desired,

(b) The repeat number, N, which may be dependent on processor
number, and which may be calculated from a probabolistic

algorithm if desired,

(c) The kind of branch action desired. Program control may

either drop through N times and then branch or may
branch N times and then drop through. In either case,

when the branch control has been executed N+I times, the
simulator subroutine terminates, and the next time the

control word is executed the process is reinitiated.

(d) Special CALL/RETURN constructs are available for sub-
routine calls.

7.1.7 Coordinator

The coordinator (CR) has its own instruction set and simulated

code file. However, the CR is modeled in less detail than the EU,
so the simulated instruction description requires only one coded

word containing six parameters: Three kinds of synchronizing
actions, size of instruction, CR memory action, and CR processor

time. The processor is modeled as a single unit, so no instruc-

tion overlap is modeled, except for memory access portions. The

CR memory is modeled as a single module used for both program and
data. The interaction is simplified by assuming that program

fetch is initiated only when there is space for the new word in

program stack (two words capacity), and once initiated a program
fetch is not interrupted by data access. There is usually little

contention for memory, since data access in CR tends to be infre-

quent.

Branch control in CR is implemented in essentially the same way as

in the EU, except, of course, there can be no dependence on proces-

sor number.

7.1.8 Extended Memory Access

The new Connection Network is used asynchronously, which has

important advantages over the synchronous TN when the pattern of
EM access is different in different EU's because of data dependent

branching, or when the pattern is not a P-ordered vector. How-
ever, internal conflicts in the CN, or multiple requests to the
same EM module can cause some accesses to be delayed. The delays

are determined by the actual pattern and timing of accesses across
the entire array. However, within the framework of this simulator

it is impossible to model these delays exactly because:
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(i) Wemodel only a few processors (usually one), not 512.

(2) Wemodelonly the execution time, not the actual data

processed, so the access patterns are not modeled.

(3) The simulation model for the CN is complex, so that it is

impractical to incorporate it into the FMP model.

Therefore, the CN delay is modeled as a probability distribution.

The nominal distribution is exponential, with five clocks expected

value. Separate simulations (see Appendix B) of random accesses
to Extended Memory through the Connection Network under maximum

possible load conditions indicate an average access delay of about

one CN clock (three processor clocks). Since the CN simulator has
not been run long enough in any test case to reach steady state,

we assume that the distribution of delays may have a longer tail

than the exponential, so we approximate this worst case by an

exponential distribution with four clocks expected value (and four
clocks standard deviation). The standard deviation of the average

delay for 100 accesses is therefore 0.4 clocks, so that the worst
case out of 512 processors would be expected to have an average

delay 2.9 standard deviations greater, or 5.2 clocks.

Extended-memory-access instructions are thus modeled with the CN
delay added to normal execution time of the instruction. The

decoding of the next instruction and its overlapping execution (if

possible) is not delayed. The execution of Processor code is
delayed by instructions which use the CN buffer only if the CNB is

still busy with the last such instruction, since the EM accesses

are managed by CNB without interfering with the use of any other
processor resources. Delay is minimized by ordering the code so

as to interpose other instructions between CNB uses. In parti-
cular, the -REM type instruction which uses the data fetched to

the Data Buffer in CNB by an EM access, is placed as late as

possible in the instruction stream. By these means, the code (FX
subroutine) which suffered the largest delay from waiting for CNB

was delayed only 11.4% (see Sec. 7.2.6.2, and Table 7.2). In this

case, reducing the contention delay discussed above from five
clocks to ½ clock increased the throughput only 4.0%.

7.1.9 Simulation Results

The primary information provided by the simulation run is the

elapsed time required to run the simulated code, and the number of
floating arithmetic operations performed, which together give the

throughput in floating operations per second.
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Much additional information is reported, such as the total exe-

ctuion time of the arithmetic part of floating point instructions,

delays caused by branching and program fetch, utilization of the
various processor and coordinator resources, and the extent of

instruction overlap achieved in the processor(s). This infor-

mation can be useful in understanding why the processing of the

code behaved as it did, and is useful in guiding the details of
hardware and software design.

7.2 SIMULATIONS PERFORMED

The codes segments simulated were selected from the Hung-

MacCormack explicit and the 3-D implicit aero flow codes, and from

a GISS weather code. The criteria for code selection were, first,

to select a range of types of codes to cover a wide range of flop

throughput and of factors influencing the throughput, and second,
to include from each code samples typical of those portions which
account for the major portion of the execution time of the

program.

By comparing each block of code in an entire program with the code

segments actually simulated, it was then possible to estimate

throughput for that block, and by proper weighting, to estimate an
average throughput for the entire run of each program. These

estimates are probably on the low side because the parameters used
in the simulation model are conservative:

0

0

(a)

(b)

(c)

(d)

The assumed 40-ns clock period is ample for ECL logic.

This allows safe, conservative logic design, and actual

detailed design may show that a slightly faster clock is
feasible.

The execution time for arithmetic instructions is

assumed constant. If the instruction logic is designed

to give data- dependent execution time, the assumed

constant value is near the worst case, and the average

execution time will be considerably less.

No great sophistication of the compiler

either in the generation of efficient
optimization of register allocation or

reordering.

is assumed,
code or in
instruction

The scoreboard method for controlling the overlap of
instruction execution is assumed. As discussed in

Section 7.1, this is less effective than the queueing
method which would probably be used.
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(e) The use of the new connection Network for access to

Extended memory will produce some delays caused by

contention within the CN or at EM. These delays are
difficult to estimate accurately, so a conservative

estimate was used. The actual delays in real program

runs will probably be considerably less than the
simulated value.

%

7.2.1 Selected Codes

The selected code segments were TURBDA, AMATRX, and a portion of

BTRI from the implicit code, 5X and a portion of CHARAC from the

Explicit code, and parts of AVRX, COMP2, and COMP3 from the GISS

weather code. The throughput indicated by simulation of these
code samples ranges from 70 MFLOPS for AVRX to 1330 MFLOPS for

AMATRX. The simulation results are summarized in Table 7.1, which

includes additional information on utilization of processor re-

sources and delays in execution as reported by the simulator. A

detailed discussion of this table, and the throughput--controlllng
features of the several codes follows. The FMP FORTRAN and assem-

bly-language versions of the codes as simulated are given in
Appendix G.

Some of the earlier simulations were performed with a model of the

Transposition Network, in which accesses to EM are synchronous
across the array, and controlled by the CU. Comparison of the CN

and TN performance indicate that the average contention delay
involved in using the CN is compensated by the fact that EM access

instructions through CN can be more completely overlapped because

of the buffering action of the associated CN Buffer unit in the

processor, and by the use of a much faster implementation of the
IMOD521 instruction in the later version of the model. The ear-

lier simulation results therefore remain essentially valid.

7.2.2 TURBDA

This code has four EM accesses (three LOADEM's and one STOREM) in

the inner loop, and 28 floating arithmetic operations, of which 18

are concentrated in an in-line Newton-Raphson square root. The

somewhat low throughput of 835 MFLOPS is accounted for by three
factors:

(a) The Average execution time of 8.1 clocks per floating
arithmetic operation is about I0 percent longer than

average because of a somewhat higher than average pro-
portion of divides and multiplies.
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(b) The integer operations form a higher than average pro-
portion, as shown by the IP use percentage and are not

overlapped as much as usual by floating operations.

(c) There are only seven floating operations per EM access.

7.2.3 AMATRX

This section of the implicit code is involved with generating the

local five by five matrices to be inverted by BTRI. Each

iteration of the inner loop performs 80 floating point operations
for five EM accesses (LOADEMs), and 53 local memory accesses.

This is a rather favorable case, as shown by the high (84 percent)

utilization of the FP unit in the processor. The fact that the EM

and local memory accesses are performed with no more than about 20

percent loss from the maximum theoretical throughput of 1680
MFLOPS for the per-FLOP time of 7.6 clocks indicates the

effectiveness of the instruction overlap.

7.2.4 BTRI

A representative portion of the BTRI subroutine was hand compiled

for this simulation. About 77 percent of the floating operations

are concentrated in an inner loop, which is a 5 by 5 nested DO

loop with only i0 floating operations and 7 indexed local memory
fetches in the inner loop. BTRI runs slower than might be expect-

ed for a subroutine with no EM accessing because:

(a) The indexing of the local arrays causes a large number
of integer operations which cannot be entirely

overlapped by the few FLOPs.

(b) Several of the integer operations are large (48-bit)
instructions, but with short execution time, so that

they use up code faster than it can be fetched. The
result is the indicated 14.2 percent of elapsed time

spent waiting for program fetch.

(c) The nested DO loop causes a large number of branches,

causing 3.3 percent of time to be spent waiting for

program fetch after branch, and further aggravating (b)

above because every branch causes any program look-ahead
which has been done to be wasted.

Note that some of these inefficiencies could be reduced by unwind-

ing the inner DO loop, which would involve repeating the same

brief code section five times. Some of the cost of indexing the

local arrays could be saved by reprogramming to store the N differ-

ent five by five matrices which are generated by AMATRX in a 25 by

N array instead of a five by five by N array. This, together with
the unwinding of the inner drop, would considerably increase the

throughput of BTRI. The loss of program look-ahead on branching

can be reduced by implementing fetch on no-branch instead of fetch
on branch.

7-13
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7.2.5 GISS Climate Code Samples

Analysis of the weather/climate code throughput is discussed in

Section 3.4.4. The samples selected for simulation were as
follows.

7.2.5.1 AVIL_

This routine smooths the data in the longitude direction for

latitudes near the poles in order to compensate for the too-close

spacing of these grid points. The number of iterations of the

smoothing algorithm therefore depends on latitude and must be

computed. The index computations are fairly complex, and the
smoothing algorithm itself is very simple, so there are less than

one floating arithmetic operation per EM access, and much integer

computation.

Furthermore, the organization into a DOALL in which 26 instances

are allocated to each processor in order to leave no processors

idle considerably increases the integer computation to be executed

in each instance, thus partially defeating the purpose.

The net _esult is a code sample which is in a sense a worst case

for the FMP with floating point throughput of only 70 MFLOPS.

7.2.5.2 COMP2

Portions of the CORIOLUS FORCE and VERTICAL ADVECTION code were

hand compiled and simulated. This code performs only about two

floating point operations per Extended Memory access, and the
addresses in two- or three- dimensional EM arrays are calculated

from the indices with no shortcuts, so that one or two double-

precision integer multiplies are required for each calculation.

The result is that integer arithmetic dominates the code, as shown

by the COMP2 entry in Table 7.1, where the integer processor is

busy 65 percent vs only 40 percent for the Floating Processor.
The floating arithmetic also is above average in clocks per

operation (10.3), and floating arithmetic is being executed only

30 percent of the elapsed time.

7.2.5.3 COMP3

The portion of COMP3 simulated was LINKHO having no EM accesses.
The throughput of 980 MFLOPS indicated by simulation is only 25 or

30 percent less than the practical maximum of about 1300 to 1400
MFLOPS attained when the processors are doing floating arithmetic

80 percent of the time. The COMP3 result is lower because of
three factors:

Ca) The average floating arithmetic operation takes 9.1

clocks, compared with the nominal average of 7.3,
because of a higher proportion of multiplies

divides.

and



CODE TURBDA AMATRX

MFLOPS 840 1330

CLOCKS/FLOP O 7.6

FLOPS/EM access 6.8 16.0

BTRI AVRX COMP2 COMP3

1200 70 380 980

Q 78 _ O
--- (note i) 0.86 ---

Percent use

FLArithFpiP _ 7_ 396458 _ _ 7_
DM 31 7 9

41 40 Q 40 32 40PM

Instr. Overlap 1.0 1.2 1.2 .96 1.2 i.I

Percent Delays

Branch

Prog. fetch
EM Access 16 111.9 --- 0.6

I

!
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O Significant Factors

Table 7.1 FMP Simulation Results

Note i. See Appendix A for discussion of AVRX
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(b) The FP arithmetic is being done only 70 percent of the

time; although the FP unit is busy 82 percent. This is
because of a number of non-arlthmetic floating register

operations such as change sign, move, and local memory
access.

(c) Program branching causes delays amounting to nearly four

percent of the time.

7.2.6 3-D Explicit Aero Flow Code

In the FMP model used for the simulations shown in Table 7.2 and

reported below, the local memory is homogeneous: both modules are
shared between data and program. One test run with the processor

model having separate program and data memories shows about 5

percent lower throughput because of waiting for program fetch.
Circles are used in Table 7.2 to call attention to those items

which limited throughput for each simulation.

7.2.6.1 CHARAC

This third level subroutine from the explicit code has no EM

accesses, but contains many data dependent branches: and DO loops
whose iteration count varies because of data dependent exits. The

CHARAC code would therefore be very difficult to vectorize, but

presents no difficulty to the parallel machine, although of course
the tests cost time.

The section of CHARAC code (shown in Appendix H) which was simula-

ted consists of a DO loop on JC and a portion of the code follow-

ing the JC loop. The JC loop is preceded by several local memory
accesses to save local registers, and within the loop are 24 float-

ing point arithmetic operations. It is exited by the AND of two

comparisons of floating variables. The JC loop contains an inner
DO loop on JJ, which performs only integer operations, and is

exited by the AND of two comparisons of floating point variables.

Three simulations were performed, varying the JC and JJ counts, as

shown in Table 7.2:

Ca) JC ioop performed eight times, with JJ performed six
times in each. This gives the low throughput of 900

MFLOPS.

(b) JC loop performed 15 times, with JJ performed once in

each, giving throughput of 1180 MFLOPS.

(c) Same as (a), but with JJ loop reprogrammed in FORTRAN to

use only one rather than two comparisons of floating

variables to decide the exit from the loop, and with the

new JJ loop coded for maximum efficiency by hand, using

tricks a compiler might be smart enough to use. The

throughput of this version is 990 MFLOPS, or 10% more
than version (a), because of the 40% reduction in run-

ning time of the recoded JJ loop. If the JJ loop is

performed fewer times, the throughput will approach or
slightly exceed case (b).



Table 7.2

Summary of Simulations of EXPLICIT CODE

CODE CHARAC LX/FE LX FX SQRT

(a) (b) (c)

M_LO_S 900iI_0990 STO s30 sgo lSOO
CLOCKS/FLO_Q O Q O O O 7.O
FLOPS/EM Access .......... 3.6 2.8 4.1 ---

Percent use

__. _ _ _ ® ___ _ _ _o
FP 61 (_ 67DM 27 26 19 20 18

56 65 48 53 47PM
CN _...... 12 12 12

Instr. Overlap 1.07 l.J5 1.09 1.13 1.19 i.i]

Percent Delays

Prog. Fetch . 4.5 1.2 1.0

EM Access ...... (_ 4.6

O Significant Factors Affecting Th[oughput

81
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Nearly half of the JJ loop time is accounted for by waiting for

program fetch, both after a branch, and when code is being exe-
cut,.d faster than it can be fetched. This is another case where

more efficient packing of code or faster access to program memory

would appreciably imil_rq_e ,_hrq_gh_u_

It is interesting to note that in some algorithms the programmer

can use arithmetic comparisons and conditional branching to save

some arithmetic. In such cases the throughput measure of programs

would be more consistent if floating point comparisons were consi-

dered to be arithmetic operations; otherwise a program with super-

ior performance might be measured as having lower thrnughput. If
this measure were applied to the three cases of CHARAC discussed

above, they would become nearly equal at about 1300 MFLOPS.

Examination of Table 7.2 shows the following important factors

affecting throughput of the CHARAC sample.

(a) The average execution time of a floating arithmetic

operation is 7 to 8 percent higher than the nominal 7.4

clocks. This is because of a higher than average propor-
tion of divides

(b) Waiting for program fetch, both after branching and in

other places accounts for 13 to 15 percent of the elap-

sed time in cases (a) and (c). The high utilization of

Program Memory is not responsible: most of both delays
occur in the JJ loop, which uses a good deal of program

space while requiring little execution

(c) The utilization of the Floating Processor is low in

cases (a) and (c), even allowing for program fetch

delays, indicating a good deal of non-overlapped integer

computation. Again, this is mostly in the JJ loop, as

indicated by case (b) where the JJ range of code is

executed only once, and the FP utilization is only about
12% below the values attained in AMATRX and COMP3.

7.2.6.2 LX/FX

The second level subroutine LX from the explicit aero-flow code
executes within a DOALL with J and K as domain variables and each

instance has inner DO loops on I, with IL or IL-2 iterations. The

third level subroutine FX is called in an inner loop that is per-
formed twice, so FX is called about twice IL times in each in-

stance of JK. The simulations were run with the IL and IL-2 loops
both performed i0 times, since the computer runs would have been
too long with values of i00 and 98. At ten iterations the code in

the loops dominates the running time, so there is little error in

this approximation. Separate simulations of LX, with FX calls

deleted, and of FX code (with no RETURN) were performed. For
interest sake, the SQRT code which is present in-line in FX was

also timed by using the trace in the simulation output.
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The results are shown in Table 7.2. The FX calls contribute about

70 percent of the FLOPS in LX/FX, and the tabulated figures for

LX/FX agree with the weighted average between LX and FX figures.

The LX/FX throughput of 570 MFLOPS is limitod by the factors

circled in the table: (i) a mix of arithmetic instructions that

gives an average execution time of 8.3 clocks or about 12% more

than average, (2) a high usage (48%) of the integer processor,

(3) appreciab!a delay (4.5%) for program fetch after branch and

(4) 9.2% of the running time is spent waiting for extended memory

access.

LX is structured in such a way that much of the EM data for the IL

loops is pre-fetched to local arrays in a DO loop of IL iterations

which per'_rms no floating point arithmetic, and similarly, at the

end the local array of results is written back to EM. These pre-

fetch and post-store portions of LX take 12% of its time (not

counting FX). Similarly FX was coded to precalculate and save

indices and local variables used repeatedly in the code, and this,

together with save and restore of registers used in FX takes 13%

of FX time. The rest of LX and FX appear to be normal code, with

no more than average amounts of pure integer operations and loop-

ing and branching, so that the results should be considered normal

for the flops-per-EM-fetch ratio of these codes.

It is clear from the LX/FX simulations that at their rate of EM

accesses about half the execution time is spent doing the EM

accesses and the integer computations of EM addresses. As an

experiment, a simulation was run with the average delay caused by

contention in CN and EM reduced to 1/2 clock, as would be expected

for the actual average loading of CN (12%). This reduced the

running time of FX by 4.0%. In a second experiment, the execution

of times of double precision <nteger arithmetic were reduced to

the values estimated for single precision in a 32 bit integer

arithmetic unit. This produced a further 6% reduction, for a

total of 10% reduction with both changes, or an FX throughput of

650 MFLOPS.

7.2.6.3 SQRT

A new square root macro was programmed, using recently added

integer/floating transformation inst:uctions (FIX, FLOAT, ADDEX,

MOVEX) to address a local memory table for a first approximation

good enough so that only three iterations are necessary. The

resulting SQRT has 14 flops, runs in 119 clocks, and has a through-

put of 1500 MFLOPS for the array. The entry in Table 7.2 is

incomplete because SQRT was not simulated by itself, the values

shown being extracted from the trace of the FX simulation. This

SQRT accounts for 10% of the flops of LX/FX. The SQRT found in

TURBDA was an earlier version.
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7.3 APPLICATION OF SIMULATOR RESULTS

The above simulation results from the basls for the application

analysis summarized in Chapter 3 and described in more detail in

Appendix A. The extension of the simulator measurements to those

code sequences that were not simulated, is also described in those
locations.
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8.1 SCHEDULE

Chapter 8
SCHEDULE AND FACILITIES

Ix

8.1.1 Introduction

Realistic scheduling of a large program such as NASF requires the

systematic definition of the tasks to be performed to levels for
which reasonable estimates can be made. With each successive

level of detail the time estimates become more accurate. For the

purposes of this study only the first level has been estimated for
the total effort. It therefore must be considered tentative.

Second and third level schedules have been prepared in specific

tasks areas to demonstrate the refinements that ultimately must be

prepared for the total effort ahd to illustrate the management
tools that can be used to monitor, analyze, and control the
program schedule.

8.1.2 The Overall NASF Program Schedule

The NASF program schedule presented in Figure 8.1 is based on a
number of factors and assumptions. It is assumed that the initial

sixteen months is dedicated to the design and final specification
effort. After this initial effort final design leading to

procurement, tooling and manufacturing will begin. Most of these

implementation tasks are of the order of fifteen to twenty one

months. The final period of integrations, delivery, installation
and testing is estimated at eighteen months. This results in a
total program duration of 55 months. The estimates are based on

past experience and best judgement. They do not represent either
the best or worst case possibilities.

No attempt has been made to define a critical path for this
summary schedule. However, critical paths have been determined on

schedules of individual activities as will be demonstrated in'the

examples that follow. The final output of the overall program
schedule is shown as the "deliverables".

I

!

i

!

i

The NASF schedule has been divided into nine task areas.

i. Program Management

2. Systems Management, Integration and Test
3. Flow Model Processor

4. File Memory Subsystem

5. Support Processor Subsystem
6. System Software

7. User Support Subsystem

8. Facility Engineering

9. system Support

The above breakdown is based on grouping of tasks of similar
nature or relating to a major deliverable element. This same

breakdown could be used for cost estimating as well.

8-1
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For the most part, the scope of these areas are self evident.

Program Management includes the monitoring, review, reporting and
control of the overall program activities. In addition, this task

includes schedule, cost and configuration control, generation of

procurement and production releases, subcontract performance
monitoring and liaison with customer representatives. The last

area, System Support, covers the tasks relating to reliability,

maintainability, human factors, spares, documentation and manuals,

and training. Intermediate milestones shown in these two task

areas are not major events but represent the bounds of the time

periods for certain emphasis.

The schedules presented assumes that most system integration and
testing is done on the manufacturers premises. A trade off,

depending on the availability of the structure for housing NASF,

may show that final integration and testing may be more effective-

ly done at NASA Ames, possibly shortening the schedule.

8.1.3 Schedule Management

The schedules for final design, fabrication, integration and

installation of a large system such as the NASF Processing Sy_oem

should be developed on a multilevel basis. The first level should
delineate the overall program showing major milestones and "deliv-
erables".

Each activity for these tasks areas may be delineated in more

detail in a second level of scheduling. These include such activi-

ties as the Integration Plan, or the Fabrication and Integration
of the FMP. A third level of schedule detail further delineates

the major activities within each of these task areas, such as the
design, fabrication and testing of the FMP Processor.

For most planning, schedule control and resource management this
level of detail is sufficient. However, fourth and fifth levels

are usually desirable for specific hardware, software and documen-

tation items to be produced or for individual personnel or group

assignments.

The first three levels are best managed by PERT (Program Evalu-

ation Review Technique) type schedules. In these schedules single

events (start and/or completion dates) are depicted as nodes. The

activities or tasks to be accomplished are depicted as the inter-
...... _ _^- _ 11hoar f]ow represent sequential and appro-

ximate temporal relationships. Where the completion ot one task

is a prerequisite before the completion or beginning of another

task that is not a natural sequence, a "dummy" activity is shown.

#



The result of this graphic representation of a group of activ-

ities, is a network, showing the starting event and activities,

the major milestones (events) and activities required to accom-

plish a desired goal or goals which are in turn shown as the final
event(s). The PERT network should clearly depict the interrela-

tionships between various tasks.

Once the time elements are assigned tc the tasks of a network, the
critical path can be ascertained. The critical path represents

that sequence of activities required for completion of the end

objective that requires the longest period of time; that is to say
that a single day (or month) slip in any one of the activities in

the path, will result in a day (or month) slip in the overall

schedule.

One of the many advantages of PERT is that it lends itself to

management, maintenance and analysis by data proce_3sing techni-

ques. This is readily accomplished by the use of Burroughs PROMIS

(Project Oriented Management information System) which has many
u_ful management outputs. A_tivities In-the c_ticai path are

easily identified. The slack in noncritical activities is

reported. The range of acceptable start and finish dates is

provided. Holidays, overtime and shift work can be made part of
the schedule. Flags for sorting of activities by discipline,

organization, or other keys can be employed. A PROMIS data base
is easily updated permitting rapid assessment of the impact of

changes or other new inputs. The use of this tool in initial

planning is shown in the discussion of the schedules that follows.

8.1.4 NASF SCHEDULES

Figure 8.1 illustrates the major activities of the nine NASF task
areas leading to the achievement of the final program goals (also
shown as deliverables). The interrelationships between some of

the milestones are shown with arrows. For example, the completion

of the final design and specification of the various hardware and

software elements are all inputs to the final integration plans

and system analysis efforts; the design and final specifications
of the hardware items is needed as an input to the activity that

will issue the final facility requirements documentation. For

each activity an expected time for completion is indicated below

the llne representing the activity.

Each event is given an identifying number which is used in

creating the data base for analysis and reporting. Table 8.1

delineates this numbering system and shows it to the lower levels

for certain categories.
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Event Numbers

000000 - 099999

100000 - 199999
and Test

200000 - 299999

300000 - 399999

400000 - 399999

500000 - 599999

600000 - 699999

700000 - 799999

800000 - 899999

210001 - 219999

220001 - 229999

230001 - 239999

240001 - 249999

250001 - 259999

260001 - 269999

270001 - 279999

280001 - 289999

TABLE 8.1

NASF Event Identification Numbers

Task Area

Program Management

Systems Management, Integration

Flow Model Processor

File M_mory Subsystem

Support Processor

System Software

User Support Subsystem

Facility Engineerin9

System Support

FMP Processor

FMP Extended Memory

FMP Connection Network

FMP Coordinator

FMP Cabinets and Cables

FMP Power Distributor

FMP Test System

FMP Data Base Memory
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To demonstrate the application of managementtools for schedule
monitoring, analysis and control, the next two levels of schedule
detail for specific aspects of the NASFhave been defined. The
schedule for the fabrication and integration of the FMPwhich is a
major hardware item of the NASFand the final design, fabrication
and testing of the processors, which represent a major portion of
the FMP hardware have been selected for further delineation. It

is quite possible that the critical path for the NASF could be

dependent on activities in these two areas.

Figure 8.2 takes the single activity "Fabricate and Integrate" of
the Flow Model Processor task area and breaks it down in to the

next level of detail. The first node of this schedule corresponds

to the second node of the FMP path on the program schedule in

Figure 8.1; the last node corresponds to the third node on the

program schedule. The first node on Figure 8.2 divides (with no
time allocation) into the eight major elements of the FMP.

For scheduling purposes a preferred sequence of integration is
assumed. The Eirst point of integration is that of the FMP power

distribution system with the FMP cabinets and cables. The sche-

dule then calls for the integration of the coordinator with
the use of the FMP Test System (which will include the FMP diagnos-

tic controller). Not all of the FMP cabinets, cables and power

distribtuion system are required for the installation, checkout

and debugging of the coordinator. Completion of some portions of
these can be deferred until required. This level of detail can be

included on the next lower level of scheduling.

The installation of the connection network is next followed by the

installation integration and checkout of the processors and the

extended memory modules. The end events of the processor and

extended memory activities are shown as only two tasks for each

element, "Install First Processor" and "Install Last Processor"
and "Install First Extended Memory" and Install Last Extended

Memory". These end events are used in lieu of having 585* indivi-

dual inputs representing each processor and extended memory

module. A rather large series of activities such as the schedules
for each of the processors is best handled by a straight forward

status list.

Figure 8.3 further delineates the detailed activities for the

processor final design, fabricate and test activity shown on

Figure 8.2. It will be noted that there are several different

paths leading to the availabilty of the 585 processors. The upper

most path shows the activities for the design and procurement of
the printed circuit board. A second and third path are the activi-

ties relating to the design and development of the processor
tester and test software. The lowest path which merges with the

tester path involves the design, fabrication and evaluation of a

prototype processor.

*The current estimates for the number of processors and extended

memory modules manufacturing starts is 585 which takes into

account shrinkage and spares.

8-6 _!
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8.1.5 Critical Path

The critical paths for the schedules shown in Figures 8.2 and 8.3

were determined using Burroughs PROMI8. A data base was created

listing each actlvlty's starting and ending event, the mean time

to complete and the activity description. A hypothetical start

date was declared and a PROMIS output was generated providing the
earliest and latest start date, earliest and latest end date and

the amount of slack in each activity. A hypothetical start date

in calendar terms is required, since PROMIS uses a real calendar
for its time base. This is done to permit considerations of week-

ends, holidays and for convenience of reporting. For the purposes

of this demonstration a start date of i July 1981 is hypothosized

for the beginning of the final design of the FMP. Figures 8.4 and
8.5 show the PROMIS outputs for the schedules in Figures 8.2 and

8.3. Table 8.2 explains the abbreviations used on the PROMiS

reports.

The critical path is that sequence of activities which show zero
slack. In Figure 8.4, PROMIS output for the FMP schedule the

critical path is seen as being:

i

Preceding Succeeding

Event Event Mean

Number Number Activity Description Time

240001 252000 The coordinator design, fabri- 50 weeks

cation and test,

Installation and debugging of
the coordinator

Installation and debugging of
the connection network

Initial debugging of the FMP.

TOTAL

252000 253000 12 weeks

253000 254000 i0 weeks

254000 299000 20 weeks

92 weeks

There is a parallel branch in the critical path in the test system

design and fabrication. Examination indicates 42 weeks slack in

the design, fabrication and testing of the data b_se memory. This

shows that a starting date of any where between 1 July 1981 and 21

April 1982 would not impact the finish date of 5 April 1983 for
that schedule element based on the estimate of 50 weeks for its

completion. The ability to determine slack permits the manager to

effectivetly allocate resources among the various parallel
activities.
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TABLE 8.2

PROMIS Report Terms

HEADINGS

io

i?>

PRED NUMBER

SUCC NUMBER

DESCRIPTION
MEANTIME

EARLIEST START

LATEST START

EARLIEST FINISH

LATEST FINISH

TOTAL SLACK

Preceeding event number

Succeeding event number
A brief identification of the activity
An Estimate in weeks (unless otherise noted)

of the time expected for completion.

The earliest date that an activity can begin.
The lastest date that an activity can begin

without impacting the schedule.

The earliest date that an activity can be
finished.

The latest date that an activity can be
finished without impacting the schedule.

The amount of time in weeks unless otherwise

designated) in escess of the meantime during

which a task may be completed and not impact
the schedule.

ABBREVIATIONS

PR Processor

EM Extended Memory
CR Coordinator
CN Connection Network

DBM Data Base Memory
FMP Flow Model Processor

POW Power
DIST Distribution

SYS System
PCB Printed Circuit Board

HDWR Hardware

MATL Material

DES Design
FAB Fabricate

INST Install

C.O. Checkout

SPEC Specify
MFG Manufacturing

EVAL Evaluate
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Figure 8.5, PROMIS Report for Processor Design and Fabrication,

reveals the following critical path:

Preceding Succeeding
Event Event

Number Number

210001 210005

210005 210010

(210005 210035)

210010 210210

210210 210230

210230 210250

210250 218001

218001 218585

218585 219585

Activity Description

Detail Design

Final Design

Power (Supply) Design

Design Testor

Design Testor Software

Develop Testor Software

Debug Testor

Begin Processor Tests

Test Last Processor

Mean

Time

8 weeks

8 weeks

(8 weeks

parallel branch)

12 weeks

8 weeks

12 weeks

8 weeks

15 weeks

.5 weeks

71.5 wee ks

The 71.5 week period begins 1 July 1981 and ends 14 December 1982

with the completion of the off-line testing of the last (585th)

processor. It should be noted that since there are no apparent

constraints on the requirement date of the first processor there

appears to be 18 weeks of slack. This apparent slack disappears
as soon as the requirement for the availability of the first

processor for installation into the FMP (as shown in Figure 8-2)
is considered. Accordingly, in reality, there is a branch of the

critical path after the sixth activity, Debug Testor, which is

Test First Processor, 2 weeks. This results in a critical path of
58 weeks for the availability of the first processor. This same

58 weeks is shown as the time for the first activity of the upper

path of Figure 8.2.
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8.2 FACILITIES

Refinements made during this study on the concept of the NASF as

presented in the initial study [I] have had no significant impact

on the facility requirement (also presented in the initial study.

Table 8.3 summarizes these facility requirements for power and
floor space and places a maximum limit on each. Appendix J,

General Design Guidelines delineates environmental factors for the

design of the NASF Processing System hardware. These same limits

should be consistent with the environmental capabilities of the
physical building.

TABLE 8.3

Summary of NASF Power and Floor Space Requirements

POWER FLOOR SPACE

ESTIMATE 555 KVA 40,000 square feet

MAXIMUM 750 KVA 50,000 square feet
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APPENDIX A

PERFORMANCE PROJECTION BASED ON BENCHMARK PROGRAMS

A.I INTRODUCTION

The four prograns used as benchmarks in evaluating the design
were_

(i) NASA 3D implicit aerodynamic flow (aero flow) code

supplied by Ames

(2) NASA 3D explicit aerodynamic flow (ae_o flow) code

supplied by Ames

(3) GISS weather code, in se%eral different versions

(4) Spectral weather code from MIT

Evaluations of the first three were comprehensive, r,_sulting in

projections of 1.01 Gflops/sec for the implicit, 0.89 Gflops/sec

for the explicit, both at one million grid points, and 0.53

Gflops/sec for the GISS weather code.

A range of throughput values from zero to 1.50 Gflops/second for
individual code sections was derived from the simulation efforts.

These variations are primarily caused by the relationships of

individual subprograms to the data in local processor memory and

extended memory, the choice of mesh size and the choice of the
metric for performance measurement. An example of zero throughput

is provided by the subroutines BCY, BCZ and OUTER in the 3D

explicit aerodynamic flow code. These routines shuffle data in

data arrays in the EM. As no floating point operations are
required for this function a zero throughput value resL11ts. Data

sorting algorithms would be similar examples.

A throughput value of 1.45 Gflops/second is illustrated by the
intrinsic square root function. Square root operates entirely

within the processor, mostly in high speed local registers. Sub-

stantial portions of the simulated codes run from [.i to 1.3

Gflops/second rates. Examples of this are

• subroutine BTRI in the implicit code

. subroutine CHARAC in the explicit code

. subroutine LINKHO in the GISS code

Examples with lower throughput values typically occurred in rou-

tines where a high frequency of access to the three dimensional

global arrays was required. The ability to overlap array index

calculations with floating point operations is limited under these
conditions.
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Performance is generally increased when the grid size is incre-
ased. The 3D explicit aerodynamicflow code showed0.79 Gflops
for 30,000grid points and 0.89 Gflops for 1,000,000 grid points.

The frequency of execution of individual code segments must be
known for the performance evaluations. Assumptionswere made in
those cases where data dependent loop counts and branches occur.
Throughout the prograus a meanvalue rul_ was generally employed
with an occasional reduction to somemoreconservative value where
appropriate. In one case, CHARACfrom the 3Dexplicit, simulation
was run at several different assumptions to test the sensitivity
of throughput to the data dependencyassumptions. In the case of
CHARAC,throughput varied no more than 15%.

The implicit code achieves the 1.0 Gflops/sec throughput r_te
being used as a guide. The explicit code appears to be about I0_
slower than the implicit code.

On GISS weather, the non-vectorizable portions of the code
exceededone Gflops/sec (COMP3),while the vectorizable portions
(COMPIand COMP2)were slowed downby EMaccessing and memory-to-
memorymovesthat produced no floating point operations.

The following sections discuss the methods used for projecting
performance. Also to be reviewed are each program, and someother
applications, namelysorting and fast Fourier transforms.

A.2 METHOD

The method used for performance evaluation was generally the same

for all of the first three benchmark programs. Because of time

and budget limitations, only a cursory look was taken at the
Spectral weather code.

First, throughput was analyzed on the basis of FMP computations

only. I/O operations were ignored. Transfers between DBM and
file system are independent of, and go on in parallel with, the

FMP computation. It is assumed that the file manager stages the

next job, and unloads the last job, in times which are completely

overlapped with current computation. DBM-EM transfers are also

ignored, since they go on concurrently with current processing (as
long as EM space is available). At a transfer rate of 40 Mw/s,

the 15 million words of a restart point of a typical aero flow
code are loaded in 0.375 seconds, which can be compared with the

600 seconds duration of a typical run. Hence, even when not

overlapable because of EM allocation conflicts, they should have
little effect on aero flow computations. Therefore, both system

I/O and user I/O were ignored.
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Each program was analyzed to find the calling tree of its sub-

routines. Major program parameters such as grid size, total

number of time steps, etc. were then established. This data

allowed the determination of the total number of executions of

each subroutine.

An analysis of all data declarations was then performed to

establish the GLOBAL or LOCAL memory palcement of all major vari-

ables. This analysis also determined those variables that were

potential type INALL variables. The programs were then scanned to

establish the placement of the DOALL statement construct through-

out the program structure. This information determined the number

of parallel machine cycles for each DOALL and the processor utiliz-

ation level number. A handcount was then performed on all rou-

tines to determine the total number of all floating point oper-

ations (f), the number of floating point divide operations and the

number of Extended Memory accesses (mi). Processor utilization

was also noted for each code sequence. Next, high usage sections

of typical code were selected for hand compiling into FMP machine

language. Results from detailed simulations of these code sec-

tions were then used to develop an empirical formula used to inter-

polate the performance of code sections not simulated. This

formula is a linear function of the number of floating point

operations, the number of floating point divide operations and the

number of extended memory accesses. These three factors are suffi-

cient to fit the simulation results, after constants are adjusted

to provide agreement with detailed simulation results.

The following symbol definitions pertain to the equations below:

T s = Total system throughput rate - Gflops/second

Tp = Single processor throughput rate - Gflops/second

Ef = Total floating point operations - Flops

E d = Total floating point divide operations over 2% of Ef

E m = Total Extended Memory access operations

E t = Total program elapsed time (I processor)

R i = Ratio of active to total processors

System throughput is then defined as:

= Total Flops = _fi

Ts Total Time [---{i

(A.I)
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The linear approximation to this function was then determined as:

Ts = _i = 1.74

_-ti. K0+5.0 * Zm
Xf

as Tp = T s
512

(A.2)

(A. 3)

E t (Elapsed time) was then solved for as

E t = _f* (K0+5" __mm) , 512
_f

1.74

(A.4)

or E t (A. 5)

E t = K0"295" _f+1471" _m

The value of K 0 was then estimated as 1.0 or 1.2 based on indivi-

dual estimates of the quantity of nonfloating point commands in a
given code section. Basic system throughput could then be calcu-

lated knowing the individual counts of floating point operations

and Extended Memory access via

T s = _fi (A. 6)
* R.

_t i 1

-=0_?

A-4

where R i (ratio of active to total processors) was determined from
the analysis of parallel DOALL statements. Where the formula gave

results in excess of 1.33 Gflops/sec, for a particular code
sequence, the value 1.33 Gflops/see was adopted instead.

The above formula for calculating individual code segment times

assumed that two percent of the floating point operations were

divide operations. The divide instruction consumes 1460 nano-

seconds which is nearly six times longer than the estimated

nominal floating point instruction time. A special count of

divide instructions was therefore included in the analysis. When

this count exceeded the two percent rule a correction factor of
1460" excess count was added into the above time calculation

formula.

Examples of exceptions are TRIB and EIGEN in the implicit (too

many divisions), AVRX in the GISS weather (too much integer arith-
metic and data-dependent processor utilization).



U

Figure A.I plots the formula used against the results of simula-
tions both for the implicit code, the explicit code, and the GISS

weather code. It is seen that the formula is validated over a

large assortment of "typical" codes. It is also obvious that the
formula must be taken with a grain of salt, and that each and

every section of code should be scrutinized to see if it repre-

sents some exception for which the formula will not work.

15

THROUGHPUT PROJECTION FORMULA:

SORT x
1.74

TS"- _..__p.--

K+5.0"A'_ AMATRX/ K |

_= /-/rx_//_uRsoA"_'"_ C.ARAC|°_
}

o

_._ NOTE'OMA POINTS MARKEO x HAVE NO E_ ACCESSES

.5, ' _"/</" ,x; _x

°°,./

e AVRX

5 10 15 20 oO

Xf
_-_ (FLOPS I ACCESS I

Figure A.I Throughput Projection Formula vs. Simulation Results

A-5



A.3 THROUGHPUTOFIMPLICITAEROFLOWCODE

A.3.1 Summar[

The throughput of the implicit code is 1.01 Gflops/sec for the

grid size of 100 x 50 x 200. This is the estimate resulting at

the end of the analysis. During the course of the analysis, as
various assumptions and corrections were being applied, the esti-

mate varied from 0.973 Gflops/sec to 1.043 Gflops/sec.

A.3.2 Assumptions

The following were the assumptions and program modifications used

to produce this result. Examples of the resulting code are

included in sections which follow. In addition, Appendix G has a
side-by-side comparison of some of the original codes and the FMP
codes.

All variables indexed on the three grid variables J, K, L were

assumed to be STRUCTURE arrays resident in Extended Memory. In
one case, the accessing pattern was such that the variables could

be ass_,ed to be resident in Processor _mory. In this case, an
instance being executed on a processor was able to access the

STRUCTURE variables without having the time penalty of EM acces-

sing. Not much improvement is expected when more of the STRUCTURE
arrays are processor resident.

The grid size is IMAX, JMAX, KMAX = 100, 50, 200

The compiler is able to use a MAD or FADEXL instruction when one

is appropriate, and to reorder arithmetic expressions. For

example, the expression (A + B'C/2) would be implemented with a
FADEXL and a FMAD.

I/O operations are ignored.

NMAX = i00, arbitrarily.

All arrays declared as A(720,6,30) where the 720 dimension is

indexed on KL = (L-I)*ND+K, and the 30 dimension on J are assumed

to be changed to A(I00,50,200,6) where the subscripts used will be

J, K, L, and whatever, respectively.

A total of 94 separate sequences of code were identified.

The computation of RESID at the beginning of STEP is assumed to be

a S_4ALL over the domain J=I,100; K=I,50; L=I,200. With 1920

cycles in this DOALL, the 9 extra steps at the end for the SU_LL
are insignificant.
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All calls on subroutines XXM, YYM, and ZZM were brought up into

line. Further, the resulting code was put down into the DO loop

that normally follows such calls so that XX, YY, and ZZ are recom-
puted each time. The result is that the four result values

produced by each single iteration, within the former XXM, YYM, or

ZZM, are used immediately, and can be LOCAL variables. If the
program were left in its present structure, where all elements of

the arrays XX, YY, and ZZ are computed at one time, the arrays
would have to be either INALL, with 100-fold waste of memory

space, or GLOBAL, with 100-way access conflicts in memory when

these one-dimensional arrays are used in two-dimensional DOALLs.

By computing these elements one at a time at the _oint where they
are used, the memory to store them is saved. The amount of compu-

tation does not change but several copies of in-line code are

needed to replace each such subroutine.

In VISRHS, and in BTRI, essentially identical code is seen repli-

cated. One copy is executed at one end point (say I=l), the other

copy is executed at the other end point (say I=IMAX), and the

third copy is inside a DO I=2, IMAX-I loop. In VISRHS these three
cases were subsumed into a single DO I=I.IMAX loop. In BTRI, an

observation on the incoming data shows that the first iteration is

degenerate (a diagonal matrix is being decomposed , which is

nearly a no-op), so the first copy is rewritten, and the latter
two combined into a DO I=2,IMAX loop.

SMOOTH was rewritten into a single three-dimensional DOALL.

Only those named common areas that are actually used in a program
unit are declared. This improves FMP operation, speeds up sub-

routine entry and sometimes releases memory space.

Where feasible, divisions were replaced by multiplication by the

reciprocal, including every division by a literal.

In doubly nested DO loops with simple subscripting (DO N=I,5 and
DO M--I,5), the code is assumed restructured either by the program-

met or by a later optimizing version of the compiler such that
there is no more than one integer multiply per set of subscripts.

For example, one can increment auxiliary index variables per

iteration. Two such loops contain 26 percent of all the floating

point operations in the program.

A.3.3 Analysis of Implicit Aero Flow Code

Equation A.6 (Section A.2) is an extrapolation of the simulation

results to the port ions of the code that were not simulated.

About 60 percent of the running time of the implicit code is

represented in the two simulations that were done, namely sub-
routine BTRI and the portion of subroutine RHS that used to be sub-

routine AMATRX in a previous ve,'sion of the program. This grati-

fyingly high percentage of execution actually simulated arises



becauseBTR! itself represents over 55 percent of the computation
of the implicit code. One statement in BTRI which is executed
25,000,000 times during the course of the program, represents 21
percent of all the floating point operations in the entire
program, and is found in the test case.

Exceptions to Equation A.6 are code sequences in TRIB, EIGEN, and

INITIA with an atypically high proportion of divides. These are

executed so infrequently as to disappear from the total throughput

figure. At the beginning of BC there is a section that could have

been implemented as a series of SUMALL's. In this analysis, the
summations were done serially %ith 38 percent processor uhiliz-

ation instead. On the other hand, a SUMALL was used at the begin-

ning of STEP to compute the variable RESID. This runs with "typi-

cal" speed because of the size of the DOALL, which is across all
three dimensions, or _,000,000 instances, so that the final 512-

way summation takes negligible time compared to the 1920 cycles in
the DOALL. The processor utilization for this case is 99.97

percent.

"AMATRX" was simulated. It is the part of the subroutine STEP so
identified in a line of colmnent. The test case consisted of 3750

floating point operations per processor, achieved by iterating

several times around the code. Hence, the frequency of execution

of loop control was somewhat higher than in the actual case in

STEP, where additional operations are in the same loop. The
observed time is counted in clocks per processor. At 40 ns per

clock, and 512 processors, this computes to 1.330 Gflops/sec for

the entire FMP. Overlap between the several execution units
within the processor was such that on the average there were 1.20

instructions in the course of execution at any one time.

"BTRI" was also simulated. The test case was constuucted by

taking the doubly-nested DO loop identified by the comment
"COMPUTE B PRIME", and following it with one pass through "INSERT

LUDEC AGAIN", and wrapping an outer loop around both. There were

a total of 650 floating point operations executed in simulation.

For present purposes, it is instructive to separate the 500 oper-

ations executed during the doubly nested loop, and the 150 exe-

cuted in LUDEC. _le LUDEC protion of the simulation executed at
1.30 Gflcps/sec, while the doubly nested loop executed at 1.170

Gflops/sec, at 512 processors busy.

Hence, the assumption of 1.33 Gflops/sec for "ordinary" code execu-

tion speed where all variables are local to the processor is justi-

fied. However, when single statements are found inside doubly
nested DO loops with triple subscripting on most of the arithmetic

primaries, performance is derated to 1.17 Gflops/sec. The two

swatches of code deserving this derating are the loops in BTRI,

and similar loop in VISMAT. The simulation printout associated

with this loop in test case "BTRI" shows that 14.6 percent of the
time the processor was waiting for instruction fetch. These were

primarily integer instructions associated with subscript computa-

tions. A sequence of integer IADDs, for example, can be executed
faster than the instructions can be fetched.



A.3o4 FMPFORTRANVersion

A.3.4.1 One-to-oneMappingfrom Serial FORTRAN

There is a simple one-for-one translation from FORTRAN furnished

by NASA into FMP FORTRAN as follows. All arrays subscripted with

the grid variables are made STRUCTURE. DO loops (single or

nested) on the grid variables are automatically turned into DOALLs

as long as the data dependence allows it. Temporary variables are

allowed to be LOCAL by default. The implicit code, as supplied by
NASA, is of such regularity that practically all of it can be

transformed into FMP FOTRAN using such simple rules. Because oi!
this, and in order to savQ time, most of the FMP FORTRAN version

of the implicit aero code was not even written down, since it was

obvious from the NASA-furnished version b f inspection.

SMOOTH and BTRI were rewritten to better match the structure of

the FMP. Discussion follows.

A. 3.4.2 SMOOTH

i

A revised FORTRAN version of subroutine SMOOTH is exhibited in

Figure A.2. All computation is put into a three-dimensional

DOALL. Note that the arrays Q and S (which have total dimension-

ality Q(I00,50,200,6) and S(I00,50,200,5)) are defined as
STRUCTURE variables since they are included in both an INALL state-

ment and in a USING clause over the domain. These arrays would

exist in Extended Memory. The other variables defined over the
structure (SS, CT, and the temporaries TI, T2, T3, and T4) are

allocated space within each processor. Note that only SS and CT

must be unique to an instance over the sections of the DOALL. The

temporaries could share storage with other instances. Computa-
tions on SS and CT, having 106 elements uniformly distributed over

the processors, will take up 1862 (cycles) * 6 = 11178 words of
processor memory during the execution of subroutine SMOOTH.

The other large user of processor memory space is BTRID, a LOCAL
C_4MON area which must be declared inside the DOALLs of STEP so it

can be common to the calls on BTRI. Here is an example of the use

of dynamic memory allocation. Upon leaving the last DOALL in
STEP, this LOCAL COMMON is deallocated, leaving space for SS and

CT to be allocated during SMOOTH. See the following section on
the rewritten BTRI for further discussion.

Temporary varibles TEMP, TI, T2, T3, and T4 were used to hold
copies o_ STRUCTURE array elements so that they could be used

through several operations with only one fetch from EM.

The statement NEXTDO, used in this code but not explained in
Chapter 4, is a convenience. The NEXTDO statement is shorthand

for an ENDDO statement followed immediately by another DOALL on
the same domain.
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_4(I0

E500

_600
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_.800

3000
_I00

)_00

3q.O0

._500
3600
_700

3800
3_00

4000 4

_UBRDUTIN£ _HODTH

CDttHDN/BR_E/NHAX_JHR×_KHRX_LHRXsDT_GRHHR_GRHZ_FSHRCH_

i DXZ_DY_DZZ_FU_5)_FD(5)_HD_RLP_GD_DNEGR_HDX_HDY_HDZ_RH_

Z CNBR_PI_ITR_I4P,INT_INT_INT3

DDIIRIN /HDDEL/; J_¢eZ00; K=k@50; L=Zt_00

RESIGN /THREED(<J=_QHRX-¢)_K=_KHRX-¢)_L=_LHRX-Z))/

INRLL /HUDEL/ _)_(5)_S#_CT_5)_T_Tg_T_Tq

4TH ORDER _M_TNZH_) _ DRDKR RT THE gOUHDRRIKS

DORLL /THREED(J)K_L)/ ; USING _ _ SHU

TEMP = 1./_J_KtL_6)

DO _ H_i_5

CONTZNUE

IF <J.Ee._ .OR. _.Ke. OHRX-¢) THEN

DO _ N=_5

C_IITIHUE

ELSE

DO 3 N:1_5

1 _,X(e(J_I_K_L_N)_T3 * G(J-i_K_L_N)xT4) - 6.xET(N))_T_HP

COtiTZNUE

ENDZF

NEXTDO

_F (_,Ee,_ ,DR, K.Ee,_HHX-_) THEN

TI=e<J_K_I@L_6_

DD 4 N=¢_5

SS = _ + U.SxSHUX_e(J_K+I_L_N)XT_ + e(U_K-I_L_NJ_T_ -

i Z.xCT(N>)_TENP

EQNTINUE

Figure A.2 FMP FORTRAN Version of SMOOTH
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4100

4_00

4300

4LIO0

4500
4600

4700

4800

4900

5000

5100

5_00

5300

5400

5500

5600

5700

5800

5900
6000

6100

6_0

6300

6q00

6500

6600

6700

6800

6900

?000

?200

7300

÷

EL#E

Tl=a<J, K,_,L,O> R]_RODUCIBILI'_ OF THE
T_=a<J,K-_,L,O> ORIG]lqAL PAGE IS POOR
T_=_(J_K-£gLtb)

DO 5 N=Z_5

CDNT_NUE

ENDZF

N£XTD_

zr (L.Ze._ .DR. L,Ke. LHRX-£) THEN

TI=S(J_K_L+I_6)

DD 6 N=_5

e(J_K_L-£_N)_T_ - _,xCT(N))XTEHP

C_NTZNU£

ELSE

DD ? N=lS5

g - 6.XCT(N))_TEHP

CDNTZNU£

ENDZF

ENDDD /THREED/ ; GZUZNG $

RETURN

END

Figure A. 2 FMP FORTRAN Version of SMOOTH (Cont'd)
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The resulting rewrite of SMOOTH reduces the number of flops from
225 x 108 to 201 x 108 , and the number of EM accesses from 195 x

108 to 72 x 108 , as compared to a mechanical translation of DO

loops to DOALLs. Thus, the time is improved more than the

throughput.

A. 3.4.3 BTRI

The subroutine BTRI was also modified. Observe that when BTRI is

entered, array B is a diagonal matrix with zeros off the diagonal.

The first piece of code. which is a copy of LUDEC, therefore
executes with most of its input variables equal to zero. LUDEC is

a modified Cholesky decomposition. When faced with a diagonal

matrix, it produces a copy of that matrix for the lower triangular

matrix, and produces the identity matrix for the upper triangular
matrix. In BTRI the variables LII, L22, L33, L44, and L55 are the

reciprocal of the diagonal terms, in order to save repeated unnec-

essary divisons later on. The diagonal terms of the upper trian-

gular matrix are unconditionally equal to 1.0 and hence are not

computed.

The first copy of the former LUDEC, as shown in NASA's BTRI, can

be simplified to the version shown in the attached listing, Figure

A.3. The last iteration of the former LUDEC, at index equal to

IUA, differs from the central iterations only by tile omission of
the computation of C PRIME. To simplify the source code, this

copy was pulled into the main iteration in BTRI.

Common area BTRID would be declared in STEP:

LOCAL COMMON/BTRID/ A(LMAX, 5,5), B(LMAX, 5,5), (CLMAX,5,5),

D(LMAC,5,5), F(LMAX, 5) in that call on BTRI in which the limiting

index is LMAX using the one-for-one translation of the original.

With LMAX=200, this means that common BTRID is 21,000 words long.

When the extent is JMAZ, BTRID will take 10,500 words and when the

extent is KMAX, BTRID will be allocated 5,250 words. Note that in

STEP, where this COMMON is initially specified, it is not declared
i_ a USING or GIVING statement. For this reason, it is a LOCAL

area allocated within each processor. The copy of the subroutine

BTRI resident in each processor accesses the common area in that

processor. By the time that BTRI is executing, the current
instance of STEP would have initialized the appropriate part of

that common block.

Within the separately compiled subroutine BTRI, the declaration of
BTRI takes the form:

COMMON /BTRID/ A(IUA, 5,5), B(IUA, 5,5), C(IUA, 5,5),

1 D(IUA,5,5), F(IUA,5)
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°

iO0

i'_0 c

iZO ¢

:40

"5O

16o

170
_._0 c
190 c

."00 c

_£0

_50

_.60 C

_80 c
_90 c

310

33O

3L_0

350 c

360 C

_70 C
380
390 C

_fo0 c
u,10 c
4_0 ¢

430
440
450
460
470

4_0 £,_

SUBRQUTINE BTRI(ZUR)

RSgUH£ STRRTING INDEX = 1

CDItHDN /BTRID/ fl(IURfS_5)_ B(IUR_5_5)_ C(ZUA_St5)_
I D(ZUR_5_5)_ F_UA_5)

DIHENSZ=N H(5_5)

XNPLICIT RERL(L_

INSERT LUDEC _Zl4PLIFIED FDR DIR_DNRL INPUT RRRRY B) FDR i=I

LiE = i. IBCi_i_i)

L33 = i,,'B<1_3_3)
L44 = _,/B(I_4_4)

L55 = £./B(I_5_5)

CDHPUTE LITTLE R_ DHITTED_ THESE TEHPDRRRIES NDT NEEDED

THIS PRS$_ CDHPUTE BI_ RI$

r(i_5) = L55

F(1_4> = L44

F(I_I) = L££

CDHPUTE C PRIHE FDR FIRST RDH

_._.. t .,l:.ITk" OF THE
oRIGINAL PAGE IS POOR

DD 1_ H = 1_5

C HR_ BEEN ELIHINhTED RS R SIHPLE

RESUBSCRZPTIN_ OF THE D RRRRY

S(i_5,N) = L55 X C(Z,5,H)

B(I_3_H) = L_3 X C(I_3_H}

CONTINUE

Figure A. 3 FMP FORTRAN Version of BTRI
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q90

5OO

510

550

56O

57O

58O

59O

GO0

610

64O

65O

670

660

690

7OO

7:O

7_0

7uO

75O

76O

77O

700

790

GO0

810

8_0

830

8qO

85O

C

c

¢

.C
c

c

J.q

c

c

c

;.I

c

c

c

c

c

C

HERE NDH _TRRTS THE HRIH LDDP DF BTRZ

DO 13 I = _gIUR

CDHPUTE B PRIME _ BIGR

DO £q N=Z_5

F_Z_N) = F(I_I4) -

- M(I_N,5; x F<_-I,5)

CDHPUT£ B PRIHE

DO 11 H = J._5

DD 11 H = ",_5

H,:N_H) = B(I_NglI; - R{I,Ng._.) K B(I-1,1911} -

B(I-ig_t4) - R{I_N_W_ x E{I-i94_H} -

R{I_N95) _ B._I-Z_5_IIJ

INKERT LUDKC RGRXN

HERE _HRLL BE INSERTED R COPY OF THE FDRHER LUDEE 9
EXRCTLY RS SHDHN ZN THE IHPLICIT CODE CDHPILRTIDN BY SCHREFFER

CDI1PUTE LITTLE R_S

Di = L_I A F(Igl)

of = LZZ * (F(I,_) - L_i × Ol)

D3 = L_ X (F<Ig_) - L31 x Ol - L3g x D_)

D4 = Lqq _ (F(I94) - Lq_ x Di - LH_ A D_ - LH3 x D3)

05 = L55_(F(19D) - LS&_DZ - LSgXD_ - L53xD3 - LSqxDq._

Figure A.3 FMP FORTRAN Version of BTRI (Cont'd)
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860 C

870 C

880 C

_90

900

g£o

9_0

930

9u,.o

950

960

970
980

990

£000

10£0

£OEO

£0"30

£040

£050

_.060

1070 £5

£060

1090 i3

i£00 C

I£10 C

11Z0 C

1130 C

1£q0 C
£150

££60

£170 £9

11_0 Z0

1£90

1._00

CnHPUTE BI6 RI$

F(ZtS) = D5

F(Z_) = D_ -U45xD5

F(_3) = D3 - U34xF(%_) - U35xD5

V(Z_) = D_ - U_3XF(I_3) - U_xF(I_4) - U_5XD5

_F (! ,LT. ZUR_ THEN

DQ 15 N = _5

D£ = LZ£_C(I_L_H)

D5 = L55X(C_I_5_H} - LS£XD£ - LS_XD_ - ;.53xD3 - LSqxD_)

B(I_H) = D_ - U_SXD5

B(I_3_H) = O_ - U3_xC(I_H) - U35XD5

B(X_g_H) = D_ - U_3xB(I_3_H) - UZ_XB(It_H) - U_SXD5

, -, pAG_ _ pOOR

C_NTINUE

THIS Z$ THE END DF THE HRZN Z LDDP_ ZNCLUDIN_ Z=ZUR

H_TE THE NE6RTIUE C_DE _NCREHENT$ IN THE NEXT SECTION

D_ _0 Z = IUR-3_ I_ -£

DO 19 N=_5

CQt_TINUE

RETURN

END

Figure A.3 FMP FORTRAN Version of BTRI (Cont'd)
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(Note: If the programmer is comfortable only with literal extents

on arrys, all these declarations could be replaced by COMMON/

BTRID/ A(200,5,5), B(200,5,5), C(200,5,5), D(200,5,5), F(200,5)

which, in the present instance, merely allocates some memory that

was going to remain unused in any event.)

For handling a larger mesh, note that only the diagonal elements
of A and C serve any real purpose. All off-diagonal element are

simply copies of elements of array D with offset subscripts.

Thus, with substantial complication, due to testing to see which

array should be fetched at any given time, BTRID could be shoe-

horned into 13,000 words for the 200-1ong dimension, or into
19,500 words for an LMAX of 300. The present analysis ignores

this possibility.

A. 3.5 Analysi s

Figure A.4 shows the sections of code into which the implicit

program was dissected for the sake of analysis. Subsequent to

this analysis, it was determined that all calls on subroutines

XXM, YYM, and ZZM should be brought up into line primarily to

avoid unnecessary saving of temporary variables, as described
above under "assumptions".

Table A.I shows some of the data abstracted from these sections.

In Table A.I the subroutines XXM, YYM, and ZZM have been combined
into their callers.

Table A.2 shows this data recombined into an estimate of overall

throughput. Rather than clutter this appendix with all inter-

mediate computations, Table A. 2 has the results accumulated by

"group", where a group is a group of swatches all with the same

multiplier, and the same, or approximately the same, processor

utilization percentage. Three subtotals are exhibited. The first
subtotal includes all the easy parts of the code, iterations or

instances which are at least triply nested on the four main

indices, J, K, L, and N the time step. The second subtotal

includes all those swathces of code that are essentially negli-
gible. Most of the time here represents serial computation where

all the processors are computing CONTROL variables in parallel but

only getting credit for the one operation that it would take in a

serial machine to compute this value. The third subtotal gathers

together some operations where one-dimensional DOALLs, with fewer
instances than there are processors, result in low processor

utilization. Even so, operations with low processor utilization

are essentially negligible at the problem size considered here.

%
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,T-

_J

AIR3D---.EIGEN---(LKalI)---I--(XXM)----------XXMIoop.

L-.EIGENIoop

--INITIAT-JKLalI.

_GR_D_ , _JKLalI.

| =- GRIDIO.

_METOUT.

_JACOB-------F--(JKalI)_JKIoop.
_-(JLall) JLloop.

t--(KLall)-------KLloop.

--(Nloop).-SPIN.

-STEP

-OUTPUTIO.

FKLalI.

--AIR3DIO.

--(PLANE)-KLalI--

JKLalI.

BC (Lall)--Lloop.

JKall, JK3L.Kall TRIB_TRIBIoop.

_-Jall TRIB--TRIBIoop.

_KLalI.
U--JLall.

--(RHS)------F--(JKalI)----_J_P.
( ) --zzmoop.

_(JLall)--_JLloop.
(YYM)--YYMIoop.

_--(KLalI)---T--KLIoo p.

L-(XXM)--XXMIoop.

L-VISRHS----t--(JKalI)--T--JKIoop.

I L-(ZZM)--ZZMIoop.

h--(MUTUR)--_--JKalI--MUTURIoop.

L-(ZZM)--ZZMloop.

--(SMOOTH)--JKLalI.

--(KLalI)---T--(XXM )

BTRI'-
KLloop.

--(JLall)---T--(YYM)J

L--JLloop.

XXMloop.

, LUDECIoop--BTRIIoop.

- YYMIoop.

LUDECIoop-- BTRIIoop.

--(JKalI)---T---(ZZM ) ZZMloop.

_-VISMAT_[ZZM)_ZZMIoop.

| L--Vloop_V251oop.

JKIoop.

L-STEPSUM BTRI .... LUDECIoop--BTRIIoop.--STEPSUMalI.

PLANEIO.

Key: CAPS = Program units.

-all = DOALL over indicated variables.

- loop = DO loop.

( ) = null node except for entry and return.

Figure A.4 Breakdown of Implicit Code into Segments of Code

and Nodes for Analysis
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A.3.5.1 Description of Table A.I

In the "multiplier" column, N, J, K and L are abbreviations for

NMAX, JMAX, KMAX and LMAX respectively. Below that, is the multi-

plier ("E" stands for "times i0 to the") which results when these

extents are replaced by i00, i00, 50, and 200 respectively.

"Ident" is the identifier from Figure A. 4. Flops and EM accesses

are the result of a hand count of operations.

"Special Case" is the column for notes. The only special cases

noted are excess divisions, the occurrence of the SUMALL global
function, and

Note I: Many of the variables accessed here involve triply or
quadruply subscripted array elements. The progression of sub-

scripts is extremely regular, say indexed on loop variables
and by literals. It is assumed that the compiler or the

programmer has reduced these subscript computations to not

more than one integer multiply per accessed element. There

are several ways to accomplish this simplification.

Note 2: In reevaluating BTRI for this analysis, a substan-

tially higher portion of the floating point operations were

identified as FMAD than in the hand compiling that led to the
simulator input. A small adjustment was made on account of
this observation.

The notation "(x3)" or "(x2)" is used to signify that there are

three or two nodes or sections in the branching tree (Figure A.4)
with identical instruction counts, and identical number Df times

of execution. There seemed no need to repeat identical entries in
the table.

:Z

l _v

i ' (<;

)i:'.

• }>
,_.. o

" ',S
_=- i, '
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TABLE A.I

Characterization of Implicit Code Sections

Multiplier

175NJKL

75E8

!25NJKL

25E8

NJKL

IE8

J

Ident.

-

BTRIloop

!VISMATIoop

STEPJKIoop

ISTEPKLIoop

STEPJLIoop

SPINJKL

BCJKL

RHSJKLoop

RHSJLIoop

RHSKLIoop

VISRHSJKIoop

MUTURIoop

LUDEC

VISMATIoop

Flops/
Section

i0

131

117

117

6

i0

64

64

64

210

533

376(x3)

224

EM access/
Section

29

25

25

4

6

17

22

22

19

99

0(x3)

18

Special

Case

Note 1

Note 1

Note 2

T

1.17

1,17

0.81

0.81

0.81

0.39

0.43

0,74

0.61

0.61

1.17

0.89

1.35

1.23

Proc.

Util.

97.4%

97.4%

98.4%

96.0%

96.0%

97.4%

98.4%

96.0%

96.0%

98.4%

98.4%

97.4%

98.4%
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TABLE A.I continued

Characterization of Implicit Code Sections

J

?;

_-2o ?-

• ,,<

: _:2i

Multiplier

5NJKL

5_.8

NJKL

IE8

NJK

5E5

NJL

2E6

NKL

IE6

JKL

IE6

JK

Ident.

SMOOTHJKL

STEPSUM

BCJK

MUTURJK

VISMAT

BTRI

BCJL

BTRI

BCKL

BTRI

Flops/
Section

190

I0

667

170

5

10

12

i0

33

i0

EIGENIoop 228

INITIAJKL 6

GRIDJKL 3

JACOBIoop(s) 38

MAINIoopJKL ii

INITIAJK

EM access_
....Secti°n I

72

8O

2

0

0

24

0

16

0

56

6

6

24

5

Special
Case

SUMALL on
10 6 inst's

2 DIV

2 DIV

2 DIV

IDIV

5E3

JL

2E4

KL

IE4

JACOBJK

JACOBJL

JACOBKL

PLANEKL

2

121

3

i0

No flops

No flops

A-20

T

0.60

0.50

[.04

1.28

1.28

1.05

0.15

1.05

0.49

1.05

1.06

0.29

0.154

0.48

0.52

O.O88

0.000

0.000

0.197

1.18

Proc.

Util.

99.97%

99.97%

96.0%

98.4%

96.0%

97.4%

96.0%

98.4%

96.0%



i

i

!

I

Multiplier

NJ

IE4

NK

5E3

N

IE2

1

IEO

NJK

5E5

NKL

IE6

TABLE A.I continued

Characterization o£ Implicit Code Sections

Ident.

BCJ

TRIB

BCK

TRIB

SPIN

STEP

BC

VISRHS

STEPSUMser

AIR3D

EIGEN

INITIA

TRIBloop

BCLloop

Flops/

Section

141

3

81

3

99

5

25

1

9

139

lO(x2)

43

EM access/

Section

37

SpecialCase

2 DIV

2 DIV

5 DIV

ll DIV

ID DOALLs

ID DOALL

over L

T

0.26

0.105

0.133

0.053

0.0026

0.0026

0.0026

0.0026

0.0026

0.0003

0.0012

0.0021

0.21

0.126

Proc,

Util.

19.2%

9.6%

0.19%

0.19%

16.0%

38.4%

i
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TABLE A. 2

Throughput Computations for Implicit Code

L

Group

NJKL

NJKL*

NJK

NJL

NKL

JKL

Subtotal

JK

JL

KL

NJ

NK

N

I

Subtotal

NJK*

NKL*

Subtotal

TOTAL

Proc,
Util,

97,4%

99,9%

96,0%

98,4%

96,0%

97.4%

Flops Multi- Total

,per

3593

plier

IE8 3583E8

Time Throughput

96.0%

98,4%

96.0%

19, 2%

9.6%

0,19%

0.19%

16,0%

38,4%

190

852

22

43

314

1

0

123

7

3

210

149

IE8

5E5

2E6

IE6

IE6

5E3

2E4

IE4

IE4

5E3

IE2

1

190E8

4,3E8

,44E8

,43E8

3,14E8

3792E8

.5E4

0E4

123E4

7E4

1.5E4

2.1E4

149E0

134E4

(SCC.)
• ',,"'

343,2

31,6

,398

.083

,048

,50

375.8

,000078

,000117

,000078

,000269

.000024

,00794

,000057

,00856

10E6

43E6

50E6

,046

,341

,387

1,010

0.157

0.129

1,009

20

43

, ... .

5E5

IE6

3792E8 376,2
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A.4 THROUGHPUT OF EXPLICIT AERO FLOW CODE

A.4.1 Summary

A.4.1.1 Results

A throughput rate of 0.89 gigaflops/second at an average system

processor utilization of 97.7 percent is estimated for the Hung/

MacCormack explicit aero flow code. This estimate is based on an

assumed grid size of i00 x i00 x I00 elements and I00 time steps.
A total of 4.73 x l0 ll floating point arithmetic operations are

executed in i00 time steps, in 532 seconds. An extended memory

data base o£ approximately nine million words is also required.

A. 4.1.2 Observations

The following general observations were made. Some of these show

up as conclusions in Chapter 3.

%

o A direct conversion of this algorithm into extended FMP

FORTRAN was accomplished, with considerable ease. All first

and third level subroutines (19 of 30) require basically no

change.

o The ease and efficiency of translation to FMP machine code

was also excellent. A major compiler requirement is

minimization of address indexing operations through

recognition of common subexpressions which are abundant.

o The correct algorithm includes a considerable amount of

simple moves from one Extended Memory address to another.

This is visible in routines BCY, PRSETY, BCZ, PRSETZ and
OUTER.

A.4.2 Assumptions

The basic formula used for calculating the total time per module
was transformed to_

Time = Kl*#Flops + K2*#EM + K3*#Divs

K1 = 295 nano seconds per floating point operation (flop)
K2 = 1500 nano seconds per EM access (#EM). This value
includes time for address calculation.

K3 = 1460 per divide operation (DIV) in excess of 2 percent

of the total £1op count.

This approach is verified for the explicit code through detailed
simulation of selected typical code segments. Subroutines LX and

FX were selected for this purpose. This data is included in

Figure A.I.
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o The algorithm is a tree structured set of thiry subroutines

on three levels. Figure A.4 depicts this structure.

All level two routines are modified to employ the FMP DOALL

statement in place of the current dual nested DO
statements. The level one main program initializes GLOBAL

variables only. All level three routines are local sub-
routines (with copies resident in each processor) to be

executed in parallel as they stand.

o All GLOBAL values and simple constants are stored locally

in all processors.

o The grid size chosen for analysis was I00 x 100 x 100.

A. 4.3 Method of Ana!_/sis

The initial phase of investigation was a review of available

background material. The Navier-Stokes equations are the
essential mathematical model of the dynamics of a compressible-

fluid flow. Reference [A.I] provides the description of an

explicit discrete mathematical algorithm for solving these

equations. NASA supplied this methodology, and the FORTRAN

listing of the resulting program. Figure A. 5 shows this program's
structure. This information was then synthesized into Figure A.6,

a list of subroutine groups and the identification of the

program's major outer loop. Further detailed analysis of individ-

ual code segments determined the number of static calls on each
subroutine.

The next analysis was the identification of major data classes.

The following standard FMP classes were identified:

(a) Nine three dimensional shared arrays from the data

base. These arrays are in common and are STRUCTURE

variables in Extended Memory. This data is accessed via
three dimensional subscripts representing mesh points.

(b) System wide scalar variables (GLOBAL variables). These

variables are replicated in all processor local memories.

(c) Local common in processor memory. No communication of

this data between processors is required.



g

I MAIN

Main loop starts

End of main loop

READIO
--MESH

--WALL

--PRTFLOW--WRITEIO
--BCY

-------TURBDA

TIMSTP

-- SBCINT

-- LYC

-- LYI

-- L¥

JCLMN

CHARAC

PRSETY

BCY

ADDG
OUTER

BCY

_PRSETY

_--TRIDIA
_--DIAGON

GI
_OUTER

BCY

PRSETY
OUTER

------SBCINT

--LZC _JCLMN

_--CHARAC

_---PRSETZ
_--Bcz
_---ADDG
L----OUTER

--LZ | BCZ

_---PRSETZ
_---OUTER

--LZI i BCZ

_--PRSETZ

_---TRIDIA
r----DIAGON

HI
_OUTER

_LX BCY

OUTER

"----.PRTFLOW--WRITEIO

_PRTFLOW_WRITEIO

Figure A.5 Calling Tree of Explicit Aero Flow Code and Segments
for Analysis
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MAIN
Start of main loop

Endof main loop

Initialization routines (run once)
_LX
------LY
------LZ
------LYC
------LZC
------LYI
_LZI
--SBCINT (several calls)
------TIMSTP
------TURBDA
------PRTFLO

_Termination output (run once)

Figure A.6 Summaryof Calling Tree for Explicit Code
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(d) STRUCTURE data wherein an array of elements, one per

mesh point, may be kept in individual processors.

Subroutine SBCINT contains a three dimensional array

"SBC" of this type.

(e) Strictly local temporary data for a single subroutine or

DOALL block.

(f) Nameless temporary working store typically required in

expression evaluations. These are typically assigned to

processor registers by the compiler.

Except for type (d), examples are visible in the FMP FORTRAN

version of subroutines LX and FX (Figures A.7 and A. 8).

The next step in the analysis was a survey of all subroutines to

identify the DOALL statements. No such statements are required in

the main procedure or in any level three subroutine, which are all

local to the instances of the DOALL's. All level two subroutines

contain dual nested DO loops, which are directly converted to a

DOALL with I0,000 instances. The LX subroutine provides a typical

example. (See Figure A.7) Note in the listing of LX (in Figure

A.7), that the DOALL begins at line 102000 and ends at line

107600. Thus, almost all of LX consists of 10,000 instances of

this code (and the call to FX at line 104500 in each instance).

Thus, twenty cycles are required of each level two and three

subroutine to execute the I0,000 instances giving a processor

utilization of 97.7 percent.

The initialization routines MESH and WALL, being executed only

once, were ignored. The output routine PRTFLN was also ignored.

The next phase consisted of counting floating point arithmetic

operations, floating point divide operations and Extended Memory

accesses in the subroutines.

This count includes the effects of DO loops, fine or coarse grid

partial subscript range values and the program's branching

structure. This information is given in the various columns of

Tables A.3 and A.4. The product of these counts then produced a

total count of operations per subroutine. The application of the

formula: time = KI*#Flops+K2*#EM+K3*# Divs, then gave a total

execution time per program module. The total number of flops was

also given by the product of the number of flops per module times

the number of active modules. The system throughput rate Tp was

then compared to:

_-Flops

T = _Time
P

which is an average flops/second rate value.
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i00000

_00100

I00800

£oogo0

_01000

_01100

I01_00

_01300

iOlqO0

£01500

I01600

i01700

iOl?lO

IOZO00

I0_£00

_OZ_O0

_OZ300

i0_00

I0_500

iOZ600

IOZ700

I0_900

I03000

_03100

_03_00

_0_300

i03500

I0_600

i03700

_03800

i0_8_0

£0_0

SU_RgUTINK LX

LX _PERRTOR

COIIHON/RI_/ RH_<I0,0si00_I00)_RH_U<IO0_£00_100)_RH_U(1G0_£00_I00)

C_HHON/R_/ PRDICT(10_5)_P(101)

COt_HON/R_/ Y(100_sOYCELL(100)sJSI_JEI_d_JE_JLFH_JL_VF_YH

1 _Z(100_DZCELL<I00_K_£_KKI_KS_KE_kLFH_KL_ZF_ZH

CQttH_H/R_/ I_HK_LE_E_ZL_Ki_k_K3_K_K5

C_HH_N/_5/ _RHMRfSRHMI_GRHHPR_CU_CUI_T_KE_UU_CU_P0_RH_0_RL,X0

C_HH_N/RT/ DX_DXi,DV_DYI_DZ_ D=I_EZWRLL_XRDBNL _DT_CFL_CONST

DO||RIN /EXPLCT/s_=I_i00_J=,ifi00;K=I,¢00

DTDX=DT_DXI

DO 3 I=I_L
PRDICT(I_=RHQ (l_J_}

PRDZCT(Z_Z}=RHOU(I_J_K)

PRDICT(I_3)=RH_U_I_J_K_

PROICT(I_)=RH_N(I_J_K}

PRDICT_I_5_=E _I_J_K_

C_NTINUE

DO _ N=i_
X=I

IRDD=N-i

14HI=N-I

B=I./N

_I=I÷I_DD

U_I=U_ZIfJ_K)

CRLL FX(UII_I_J_K_LZ)

DO 5 l=_lE

_3=Ki

KZ=K3

Figure A.7 FMP FORTRAN Version of LX
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103900
£04000
XO_100
£0_00
_0_300
£0_;00
£04500
zOO600
£04700

£0q800

£0q900

I05000

_05100

105_00

I05300

£05q00

£05500

£05500

£05?00

£05800

£05900

_06000

_06100

106_00

£06_00

106_00

106500

£06600

£06700

£06600

£06900

_07000

z07£00

£07200

107300

£07_00

£07600

£07700

£07800
£07900

5

c

6

C_t<t<

9

4

2Z=Z+IRDD

UZI=U(II_UsK)

UIZ=U(I+IsJsK)

UZ_=U(IsJsK)

ZF(UZZ°6ToUIZ,RHD,(3.XUI1-UZ_)X(_.XUZ_-UIZ),LT,O,) U_I=,SX(UII+UI_

x_

CRLL FX(UZZ_I_J_K_£Z_

PRDZCT(Z_)=(NHZ_PRDICT(I_)÷RHDU(I_J_KI-DTDXR(F(K_)-F(k£_)))_B

PRDICT(I_)=(NH£XPRDICT(I_)+RH_V(I_J_K_-DTDXR(F(_)-F(_I_)))AB

PRDICT(I_)=(NHZXPRDZCT(I_)+RH_N(Z_J_K)-DTDX_(F(N_q)-F(N£_)))_B

PRDZCT(I_5)=(NHI_PRDICT(I_5)+E (I_J_K_-DTDX_(F(K_5)-F(K£_5)))XB
CONTINUE

DEC_DE x

DO 6 I=_sZE

RHQI:_,/PRDICT(I_£)

U (Z_J_K)=PRDZCT(=_)XRHDZ

U _I_U_)=PRDZCT(I_)XRH_Z

U (Z_UtKJ=PRDICT(I_q)_RHDi

EZ(I_J_K;=PRDZCT(I_5)_ RHDI -.SX(U(I�J_K)_÷U(I_J_K)X_÷W(I

R(Z) =GRHHZ_PRDICT(I_Z)AEI(I_fN)

CONTINUE

XDOWN_TRERH B. C° RT I=IL

DD 9 K6=£_5

PRDICT(IL_KS)=PRDICT(IE_6)

CRLL BCY(K_Z_IE_J_J)
CONTINUE

RHUU(I,_,K)=PROZCT(I,_) ':':2_:_! )_GE Io pO0_
RHDV(I_U_K;=PRDICT(Z_)

RHON(I_J_K_:PRDZCT(I,_)

E (I_J_K)=PRDICT(I_)
CONTINUE

CRLL DUTER(U_IsJE_sKSI_E_)
RETURN
END

Figure A.7 FMP PORTRAN Version of LX (Cont'd)
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%

100000

_GO±O0

101_00

101300

101qo0

1O1500

101600

i01700

101800

101900

10_000

10_100

10_00

10_300

lO_qO0

i0_500

10Z600

i0_700

I0_800

I0_900

103000

103100

I03_00

Z03300

iO_qO0

SUBRDUTZNK FX_U_I_Z_J_K_Z=_
X TRRN_PflRT AND _TRE_S ZN X-DIRECTION

CD|IHDN/Rll/ RH_(£OO_£00_I00)_RHDU(100_I00_I00)_RH_U(ZU0_lO0_I00)

COIIHON/RI_/ RHDN(IOO_IOO_iOO)_E(IOO_IOO_IOO)_EI(ZO0_IO0_IO0_

C_tIHDN/RI3/ U(IuO_IOO_ZOO)_V_£OO_iOO_ZOO)_N(IO0_iO0_ZO0)

CDHHflN/RIq/ F(_5)

Cflt|HDN/R_/ PRDICT(101_5)_P(101)

COIIHgN/R_/ Y_IOO)_D';CELL(ZOO)_JSl_J31_J_JE_JLFH_JL_YF_YH

£ _Z(IOO)_DZCELL_ZOO)_KSi_KEI_S£_KE_KLFH_KL_ZF_ZH

COHHDN/R_/ ZSHK_ZLE_ZE_IL_KI_K_K3_K_,K5

CO|tHDN/RS/ _RHH_AHHI_RHHPR_CU_CUZ_STOKES_uO_cO_P_RHOU,_L_X_

CDtIHDN/R6/ RHUL(iO0_IO0_O0)

CDtIHON/R6£/ RHU_RK_RLHBDR

CDHHDN/RT/ DX_DXZ_DY_DYI_DZ_ DZZ_EZNRLL_ZRDBNL _DT_CFL_CDN_T

COHHON/RS/ I_HTHX_Z_HTHY_I_HTHZ_ LY_CNT_ LYCCNT_ LZCCNT_ LZICNT_

I NLYZ_NLZZ_BETR_ET_I_CRKNZ_

CDItHDN/RN6L/ TRNT(IO1)tC_T<IO1),TRNTH_TRNTHB_CD_TH_CDZTZe_ZECTH

CDHH_N/V_SCDU/_GX_IG'{_ZGZ_TRUX¥_TAU_Z_TRUYZ_D_X_DI_Y_DZ_Z_
x UYX_VYX_WYX

RHU=RHUL(IZ_J_K)
RK =GRHHPRRRHU

RLHBDR=STO_ES_RHU

DYI=I,/ (Y ( J_ )-'( _ J-i )

OZI=I./<Z<_+_)-Z<K-Z)>

DyX=,Sx(TRNT(I)+TRNT(I+I))_DY1

Figure A.8 FMP FORTRAN Version of FX
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_03500
£03600
£03700
£03800
£03900

£04000
_0_00
_oq_o0
£0q300
£0_00
104500

z04600

£0_700
109800
10_900
£05000

105100
105400
105500
105600
z05700
£05800
£05900
£06000
£06100

UYX=U(II_J_I_K)-U(II_J-&_K/

UYX=V(II_J_£_K)-V(iI_J-Z_K}

SIGX=P_II_ -(RLHBDR÷_,_RHU)_((U(Z÷I_J_K)-U_I_J_K))xDX£-U'(XxD'(X}

X -RLHBDRR(UYXxDYZ+(N(II_J_KT£)-N(II_J_K-£))_DZ£)

TRUXY=-RHUx(U'{XxDY&+(U(Z+Z_J_K}-U_IfJpK_DXZ-UYXXDYX)

TRUXZ:-RHUX((U(II_J_K_Z)-U(ZI_J_K-Z))_DZ£÷(N(I+ZgJ_K_-N_Z_J_K)_

X DX£-(H(ZZ_J¢£_K)-N_II_J-Z_K3)xDYX_

DI_X=SI_XXUII+TRUXYXV(II_J_K_+TRUXZRN(II_J_K)-RK_(EI(I+£fJ_K)-EI(

XI_J_Kp)XDXZ-_EI(IIfJ+Z_K)-EI(II_J-_K))_DYX_

F(K_):PRDICT(II_£)AUII

F(K_)=PRDICT(II_)_UZI÷SI6X

F(K_3)=PRDICT(ZI_3)XUII+TRUXY

F(K¢_)=PRDICT(II_)AUII+TRUXZ

F(K_5)=PRDICT(II_5)AUII+DISX

IF(ISHTHX.E_,0 .DR, Z,LE.£ .DR, I,GE,IE) RETURN

x SHBBTHING TERN_ x

CBEr¢C_NST_RBS(P(II+I)-_,_P(II)+P(II-i))/(RBS(P(II+i))+

X _,xRBS(P(II))÷RBS(P(II-£)))

CII=_eRT(6RHMRR6RMMZ_RB_(EI(II_J_K)))

COEF_C_EFR(RB_(U(II_})+C_I)

DD 9 K6=1_5
F(K_sK6)=F(K_K6)-CDEFR(PRDICT(I+I_K6)-PRDICT(Z_K6))
RETURN
END

Figure A.8 FMP FORTRAN Version of FX (Cont'd)

REPRODUCIBILITY OF TI-II_
()RIGINAL PAGE IS POOR
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PARAMETERS

Throughput

Table A.4

0omputations for Explicit Code

i00 x I00 x i00 GRID SIZE

i00 TIME STEPS

%

ROUTINE

LX

FX

LY

LYC

LYI

LZ

LZC

LZI

SQRT

CHARAC

DIAGON
TRIDATA

PRSETY

PRSETZ
GI

HI

ADDG

JCLMN

BCY

BCZ

OUTER

SBCINT
TIMESTP

TURBDA

PRTFLW

TOTAL TIME - us

3.30E07
5.75E07

4.02E07
1.16E07

2.74E07

3.23E07

1.14E07

2.61E07

1.47E07

1.07E08

3.54E07

2.88E07
2.55E07

2.55E07

1.59E07

1.47E07
6.66E06

1.28E06

5.04E05

5.04E05
8.40E05

0
I.]5E07

3.75E06

5.32E08 us

TOTAL FLOPS

1,98EI0

3,60EI0

3.13EI0

9.83E09

2.46EI0

2.33E10

8.62E09

2,02EI0

2,08EI0

1.45EII

5.00El0

3,64EI0
5,86E09

5.86E09

1,08El0

6,60E09
9,40E09

1.00E06

0
7.39E09

1.60E09

4.73EII

THROUGHPUT

0,60
0,63

0,78

0.85

0.95

0.72

0,76
0.77

1.41

1,36
1.41

1.26

0.23

0.23
0.68

0,45
1.41

0

0
0,64

0.43

.89 Gflops/
sec
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A.4.4 Simulation and Hand Compilin@

A validation of the above analysis was conducted by simulated

execution of a typical code section. The FMP simulator is

described in Chapter 7.

The main stream subroutines encompassing the bulk of execution

time were LX, LY, LZ, LYC, LZC, LAX, LYI, LZI and their associated

third level subroutines. The subroutine LX and its associated

level three subroutine FX were selected as representative of this

algorithm. LX and FX are shown in Figures A. 7 and A. 8 respec-

tively. Figures A.9 and A.10 show the FMP FORTRAN versions of

TURBDA and OUTER which were also simulated. No special handling

was needed on these subroutines. Each is a demonstration of a

simple conversion of nested DO loops to a DOALL construct.

The initial effort in preparing the simulator input was the

revision of the original FORTRAN code sections into the extended

FMP FORTRAN language. Modifications were primarily in the areas

of data declarations, domain declarations, and DOALLs. Assignment

to GLOBAL variables was assumed done in parallel across all

processors. In addition to these changes, the code was reviewed

for areas in which an optimizing compiler could be expected to

achieve time savings. These changes typically take the form of a

new local temporary variable holding the evaluation of a common

subexpression in order to improve performance.

In particular, common subscript expressions were detected and

evaluated separately during both the hand analysis and the simul-

ations. These expressions all involve the integer mode sum or

products used to compute an address from the subscript values.

Although a mature, optimizing compiler will find such common

subscript expressions and combine the results transparently to the

user, the hand analysis performed this level of optimization by

hand.

For example in the subroutine FX, 25 three dimensional subscript

expressions may be reduced to seven common expressions. Other

changes such as the use of an iterated DO Loop rather than

straight line code were made to reduce the size of the generated

machine code file.
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_0

_qO

7OO

750

900

;.000

;._00

J.qo0

.1.500

1600

J.700

2800

:gOt)

_000

SUBRDUTIN£ TURBDR(CV)

CDHtlgH/RII/RHD(_OU,ZOO_IOO)fRHDU(_OO_ZO0,_O0)_

RHDV(¢O0,¢O0_O0;

COHHQN/R_/ PRDICT(Z0Z_5)_P_0¢)

CDIIHBN/R_/ Y(ZOO&_D'KCELL(_OO)_J_Z_JE¢|J_JE_JLFH_JL_%'F_YH

Z _Z(Z00)_DZCELLk_00)_K_KE_K_KE_KLPH_KL_ZF_ZH

COHIION/R_/ I_HK_ILK_XE_IL_Kz_K_E_Kq_K5

CO#|HON/RS/_RMHR_GR|4H¢_GRHHPR_CU_CVI_$T_KES_U0_C0_P0_RHD0_RL_0

CDMtIDN/R6/ RHUL_Z00_Z00_L00)

DBHRIN /E×PLCT/II=Z_0_J=Z_Z00;_=_00
INRLL/KXPLCT/ TEHP

CVZ : Z.0/CU

OORLL J=V_Z_JE_;K=Kgi_kg_| U_ING /RZZ,'_/R5/

DO Z I=Z_ZL

IF (K,Ee,Z) TEHP=U,SXRBS(EI(I_J_Z)_E_(I_J_))XCV_

ELSE XP(J,Ee,_TEI4P=_,5_RB$(EZ(_Z_K)÷EX_X_K_)_CUI

ELSE TEHP=RBS(EI(I_J_K))XCUI

END_F

RHUL_I_J_K) = _._70E-V_eRT(TKMPAX_)/TEMP+lgS,_)
C_HTIHU£

ENODO_ GIVING /R6/

RETURN

END

Figure A.9 FMP FORTRAN Version of TURBDA
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f_

H

c

t

_00

_'_5

_0

_g c
14o

_50

:GO

:_0

"90

_00

_0

_40

?.5O

_.G5
_70 3

F.75 c

P.80

_.90

_00

_J.O

_0

340

350

360

'370

£UBRDUTXNE OUTER(J_,JE,K_,KE)

CDHI4DN/RL£/ RHO_IUO,_OO,ZuO))_HDU_UO,ZOO_zOO))RHDUkIO0,iOO,IO0)

CDIIHDN/RZ_/ RHDN_IOO_UO_ZOO)_(ZOO_IOO_ZOO)_EI_IO0_ZO0_ZO0_

CDI|HDN/RL#/ U_IUO,LOO,IOO),v_ZUO_LOO)£uO)_N_ZUO);O0)IO0)

CDIIHDI&/R)/ "/(LUO))D')CELL*,_UO)+J_I,JEI_J_)JE_,JLFI4)JL,'(F,'_H

fZ_ZOO)_DZCELL_LOO)mh_I_kEZ_I"S_KE_tKLFHtEL_ZF_2H

DDNN_TRERH RT %=IL

RHB(XL,J_) u _Hg(IE,J,K)

RHgUkZL_J_K) = RHOU(IE,J_K/

RHDU_XL_J_K/ = RHDU(XE_J_K)

RHDH_XL_J_K) = RHDN(XE_J_K)

ENDDD _ GIVIN_ /RZL/_RI_/

IF (JE,LT,JE_} GO TO

UPPER B, C, HT J=JL

RHD(IIJK_K/ = RHg(Z_JC_)

RHDU(_JK_K) = RHDU_ZtJE_,K/

RHDU(I_JK_K; = RHDU(I_ JE_)

RHDH(I_JK_K) = RHDH&I_JE_K)

E_I_JKsK} = E_I_JE_h}

ENDDD( GZUIN_ /RIZ/_/RZ_

_F _H,GE,KE_) THEN

EDGE B_C, RT H=KL

DDRLL J=J_@JE_I=_IE ; U_XN_

RHD(I_J_KL) = RHO_I_J_kEE)

RHDU(Z_JsKL} = RHDU(Z_J_KE_)

RHDU(X_JtKL/ = RHDULI_U_KE_)

_HQN_I_J_L_ = RHDN_Z_J_KE_

E(IsJ_KL; = E(I_J_KE_;

ENDDO_ GIUIN_ /RI1/_/RZ¢/

ENDIF

RETURN

END

R_PItODUCIBI_ICY OF 'rtt_
ORIGINAL pAGE ]_ I_)OR

Figure A.10 FMP FORTRAN Version of OUTER
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The next phase was hand compiling. It was assumedthat the first
four registers in all groups were designated scratch registers.
They were also used for passing parameters and results to and from

subroutines. The remaining registers were employed for longer

lifetime storage requirements.

Experience during the hand compilation demonstrated that the need

for integer registers exceeded the supply. As a result, storing

and restoring of these registers had to be employed.

In subroutine SBCINT and JCLMN a non-standard approach was

assumed. Both routines have a very minor impact on total through-

put. The SBCINT routine performs a clearing operation on the

three dimensional array SBC and is called four times. SBC was

declared to be an INALL array. A single statement, SBC=0, there-

fore clears it. The routine JCLMN is called from LYC and LZC

subroutines outside of their DOALLs. Although the routine could

be programmed using recurrence, there seems to be no advantage.

This routine is, therefore, assumed to be executed serially.

A.5 GISS CLIMATE PERFORHANCE EVALUATION

A.5.1 Summary

The evaluation described below was done on an intermediate size

(2 ° latitude steps, 2.5 ° longitude increments along the equator)

weather program. The program consists of an easily vectorizable

fluid dynamics section (subroutines COMPI and COMP2 and the sub-

routines they in turn call), and a hard-to-vectorize physics and

chemistry section (COMP3 and its subroutines). The average

throughput for the entire program was determined to be 0.532

Gflops/sec. The time for a 14-day simulation with 20 minute time

steps was projected to be 4 minutes, 25 seconds.

A GISS weather demonstrated the advantages of the FMP architecture

over that of a vector machine. The vectorizable portions of the

program tended to run slow because of many EM accesses, but the

unvectorized portion of the program, namely CObIP3 and its

subroutines, ran at 1.2 Gflops/sec for the portion simulated.

A.5.2 Discussion of the Analysis

The following versions of the weather model codes were provided by

NASA as input for selecting an FMP benchmark test.



%

i

i

i

i

GISS Models

A. 360/65 version

B. 360/195 version
C. STAR i00 version

D. ILLIAC IV version

The various versions are machine dependent versions of the Mintz-

Arakawa differencing scheme which numerically solve the differen-

tial equations representing the physical dynamics of weather
conditions. Reference [2] describes this methodology.

The basic database for the GISS model is a series of three dimen-

sional arrays. The data values in individual arrays represent

temperature, pressure, humidity, etc. at each point of the assumed

latitude, longitude and altitude grid. Arrays of one and two
dimensions are also utilized in various code sections in addition

to various simple scalar values.

Minor variations in GISS versions exist due to selecting different
granularities in grid size, time step. split grid, step size, I/O

management and the nature of the Host machine architecture

(Scalar/360, Vector/Star Array/ILLIAC) considerations. Grid

sizes vary from a coarse (25, 40, 2) to a superfine (180, 288, 9)
as indicated in Table 2.1 of reference [i]. The historical

increase in computing power has provided the facilities for includ-

ing the larger grid sizes and smaller time steps and thereby

improving the accuracy of results.

A medium sized grid of (89, 144, 9) was selected for FMP Benchmark

purposes. This size is a valid test of the system's dexterlty,
although a larger size would probably enable higher system effic-

iencies and simple program conversion to the 512 processor _Ip

system. The 360/195 non-split GISS version was used as the basic
FMP benchmark model.

Simulation of code running on the FMP system is necessarily limit-
ed by time and cost. These requirements necessitate the separa-

tions of the GISS model into low and high use frequency classes in

order to expedite the analysis. Routines of low frequency
(once/run) and therefore considered of null impact were:

INPUT

GMP
SDET
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Routines of high frequency and therefore maximum impact were:
COMP1 - AVRX

COMP2 - AVRS

COMP3 - OZONE

- SOLAR

- LINKHO - SQRT
- EXP

AVRX is an extremely frequently used subroutine and presents an

interesting opportunity for optimizing FMP performance. The
function of AVRX is as follows. First, for every latitude J,

compute a number NJ(J) (also called DRAT and FNM). Then, for each

point J,I (I is the longitude index) perform a smoothing function
S.

New PU(J,I) = S(Old PU(I,J-I), Old PU(I,J), Old PU(I,J+I))

over all values of I. Then update Old PU = New PU at all values

of J, I. For any given latitude J, do the smoothing NM(J) times.

NM(J) is a non-decreasing function of distance away from the

equator, although this fact is not used in the original program.
Several methods of converting this subroutine into FMP FORTRAN are
discussed below.

i.

.

3.

A DOALL on J, with the programming over I and N serial inside.

89 out of 512 processors have instances, and the longest
instances occur at the poles where NM has its maximum value.

An outer loop on N, iterating the number of times given by the
maximum value of NM at the poles. Inside, a DOALL over both J

and I allows all processors to execute on the first iteration

of the N loop, but as the successive iterations of the N loop

occur, those instances which test and find that N.GT.NM(J)

exit without performing any work. At the end of the N loop,

only those instances which lie at the poles are doing any
work; the others are idle.

Like 2, except that when computing NM(J), the smallest J is

computed (nearest the equator) for which the given value of NM

occurred, giving JL(NM) as a GLOBAL array. The program
structure would look like:

DOALL J=l, JMAX

NM(J) = arithmetic expression

JLI(NM) = smallest J in northern hemisphere for which NM has

the value shown in the subscript

JL2(NM) = largest value of J in southern hemisphere for which

NM has the value shown in the subscript
_NDDO

%
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DO1 N= i, NM(poles) %N loop
DOALLJ=l, JL2(N); I=I,IMAX %All points needing smoothing

%in the Southern hemisphere
PU= S(Old PUvalues)
ENDDO

1 CONTINUE

Method 3 avoids the creation of instances that do no work, and
hence enhances processor utilization. Even though the last few
iterations on N have only 144 instances, since JLI will equal JMAX

for large N, and JL2 will equal 1 for large N, the average number

of processor busy would be substantially better than that for
either method 1 or method 2. The cost is increased overhead at

the beginning of the DOALLs.

4o Method 2 can be modified as follows. First, the DOALL on I

and J can be replaced by DOALL J=l, 89; II=i,i09,36. Inside

the DOALL, a loop, DO M=I,36 is added and the subscript I is

set equal to II+M. The result is that 36 neighboring values
of I are computed within a single processor, and the same old
value of PU can be fetched once from EM for all three uses

within the smoothing function. The result is a decrease in
the number of required EM accesses by almost a factor of

three, while processor utilization is reasonably good (356

processors out of 512, for the particular example).

5. With even more complexity in the management of the mapping
between domain variables and I,J, one can have 36 values

of I per instance, and keep 494 processors busy.

Time precluded simulating any more than one of the above options.

Option 5 was selected for simulation, and produced the result
shown in the table. One of the reasons for selecting option 5 is

that the remapping of the values of I,J into particular processor

might be done, not explicitly by the programmer as shown in
example 4, but by having the compiler map particular instances

into particular processors. In the prototype compiler, it is

expected that the assignment of instance number to processor will

be fixed at processor number equal to instance number modulo 512.

Future compiler enhancements could include statements that allow
the programmer to specify how instance numbers map onto

processors. The simulation, to some extent, was an investigation

of the value of such mappings.

After AVRX, the body of COMPI and COMP2 are the next most

frequently used. With minor exceptions, they have common coding
characteristics. They were:

- Heavy use of Extended Memory

- Heavy use of three dimensional indexing
- Low number of floating operations/access
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The initial section of COMP2 was judged to be typical and was

therefore simulated on the instruction timing simulator.

COMP3 is executed once for every NCOMP3 executions of COMPI and

COMP2. The radiation routines, LINKHO, etc., are called every

NHOGAN times that COMP3 is called once. Values of three, and five

respectively were used for NCOMP3 and NHOGAN. In COMP3 and its

subroutines, computations are carried on along the vertical direc-

tion, making each latitude-longitude point independent of any

other. Thus COMP3 partitions into a set of independent instances,

each having a specific location on the earth's surface. COMP3 and

its subroutines are characterized by:

- Minimum use of Extended Memory

- Simple parallel partitioning

- High number of floating point operations

- Low number of indexing operations

- Data Dependent branching

The two maximum frequency inner loops of the LINKHO subroutine

were judged typical of this code-section and simulated in detail.

The routines actually simulated during this analysis are summar-

ized in Table A. 5. They are:

* LINKHO (portions)

* COMP2 (portion)

* AVRX

A.5.3 FMP FORTRAN Version

Figures A. II, A.12 and A. 13 repsectively show the FMP FORTRAN

versions of AVRX and the portions of LINKHO and COMP2 simulated.

Note that AVRX and COMP2 make substantial use of DOALL constructs.

LINKHO does not demonstrate any DOALL constructs since it is

called within each instance of sections of COMP3. LINKHO is an

exceptionally good example of the data and instance-dependent

computation in COMP3 which would execute efficiently on the system

evaluated even through it would be difficult to vectorize. The

aerodynaaic flow codes analyzed did not exhibit the independence

between instances to this degree. Substantial use is made of

parts of the language that see little or no use in the two aero

flow codes, including:

o Domain definitions constructed using domain

expressions that

include previously defined domains. (See AVRX

for example)

o INALL declarations (See AVRX for example)

Figure A.14 shows the branching structure of the subroutines.

Note the presence of A**B, which is a form of call on the EXP

function.



Table A. 5

GISS WEATHER MODEL

BENCHMARK SIMULATION RESULTS

Measure AVRX

Total no. of CU simulated instructions 48

Total no. of EU simulated instructions 3800

Total no. of EU machine clocks consumed 25318

Total no. of floating point register
related instructions 338

Total no. of floating point arithmetic

operations 134

Total no. of machine clocks for F. P.

arithmetic operations 1039

Total no. of integer/logical instructions 2800

Total no. of control type commands 662

Average execution time for all

instructions (NS)

Average execution time for floating

point operations (NS)

Average total elapsed time for floating

point operat ions

266.5

310.2

7557.6

Rout ine

COMP2

32

3094

23417

900

688

7052

1449

745

302.7

410.0

1361.5

LINKHO

30

2529

16705

1058

1266

11624

425

1056

264.2

367.3

527.8
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1000

£1o0

I_oo

_300

1500

16oo

1ooooo

1o0100

1oo_00

100300

i00_o0

100500

_00600

_00700

_00800

100900
I01000
101100
£0£200
£0£300

101400

_01500

101600
_0£700
£01800

£0£900
10£910
10_000

I0_I00

i02200

_0_300

_02500

i0_600

10Z700

10_800

NOTE THRT THE CODE DEVELOPED BKLDLI Z$ HRNURLLV ttRPPED

TO THE HRRDHRRE BY STRUCTURIN_ THE CODE

THE DDtIRIN DEFINITIONS RRE U_ED TO RLLDCRTE

HORK TO PRDCE_SOR_ RND TO CYCLE_ (INSTRNCE_)

HITHIN ERCH PROCESSOR,

SUBROUTINE RVRX

STRUCTURE CDHHDN ,,,,HERE RRE RLL RRRRYS IN BLRNM COHHDN°oo

6LQBRL CaMHDN o.,, HERE RRE SIHPLE URRIRBLE_ IN BLRNK CDHHDN.°

£ _RLPH_i6)_DRRT(16)

GLDBRL CDHHDN /NDTK/ PU(89_1_)

DDHRIH /PROC/| PND=O_511

DDHRIN /C7C/: _N_T=lq_6

DDHRIH/RVRXD/t /PRnC,'.X./CTC/

IHRLL/PRDC/ TPU(_8)_TTPU(_8)_II(_8)_Jd(_)_EIHI_EI_EIP1

STRUCTURE LDGICRL DDNE(JH_'/}=oFRLSEo

C CRLCULRTE DRRT(4)_RLPH(d}_ _hJNL_H_J)o ONE URLUE PER LRTITUDE

DDRLL J=_sJII_X-i

TDRRT = D¥P(_)/DXP(J)

RLPH(J; = V°¢ZSx(TDRRT-I)/FL_RT(FIX(TDRRT))

DRRT(J_ = TDRRT

t|LIH(J> = FIX_TDRRT_

EHDDD

C LORD TPU _TH PU

DORLL /PRDC(PND) /

OD £ t1=1_6

C t_DTE THE IN_TRNCE NUHBER HHICH Z_ CDI1PUTED HERE

ZHHO = 51Z_(H-I)+PH_

II(H) = INND,'dHRX+I

JJ_tl) = HDD(INNO_tI_×_ # ¢

IF <XI_H_ o_T, 1_ EXIT

TPU(H) = PU_JJ_H;_iI(H)>

1 CD#_TINUE

EHDDD/PRDC/

C _TRRT R DO HHXLE

£00 CONTINUE

Figure A.II FMP FORTRAN Version of AVRX
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£O_gO0
I03000
103100
_03_00

:03300

I03_I00

:03500

103600

103700
103800
103900
.I.Ou_00 o
104100
104;_00
_0_300

10=.1.400

£04500
I0 u,600
104700

1O48O0

104900

105000
1O51OO
I05_00
10530O
I05_00

105500
105600
:,.05700
I05800
±OSgO0

106000
106100
I06_00
..06300

i06_00
106500
:06600
",06700
I06800

i06650
.1.06900

OOALL /PROC(PNO)/

EINl = TPU<I>

EI = TPU(_)

DD /EYE(ZNST)/
Z = II(INST)
J = JJ_IN_T)
ZF (I °_T, ZHRX) EXIT

IF <(DRRT(J).LT.1) .OR. (N°_T.4LIH(J)) THEN
DONE(J) = .TRUE,
_D TO g

ENDZF

EIP1 = TPU(INST+_)
ZF<I.EO°0) EZHi=PU(J_IHRX}
IF (I,E_,ZHRX}EIPI=PU(J_I)
TTPU(INST) = EI + RLPH(I)_{EIHI+EIPI-_.0_EI)

STORE CRSES

IF ((INST.EO.¢) .OR. {IN_T.EO.Z6)) PU(JgZ) = TTPU(INST)
IF(I°EO.1) PUkJ_HRXP1)=TTPU(INST)
_F(I°EO. IHRX_ PU(J_0)=TTPU(INST)
EIH1 = EI
EI: EIP1

ENDDB /C'/C/

SYNCH POINT
NEXTDO

DO IN_T = _6
TPU(IHST) = TTPU_INST)

ENDDa

DO ZN_T=Z_8_7
TPU_INST) = PU_JJ%INST)qIZ_INST))

ENDDO

DD ZNST = 1_

_F((I,EO°0).OR._i. EG.ZHRXPI))TPU(INST)=PU(JJkINST).II(INST))

ENDDO

N=N_I

DD tt:l,Z
TPU(ES+M; = PU_II{HJ_JJ_II_)

ENDDO

ENDDa/PRBE/

DDRLL d=_dttHX

;F (RLL_DOHE_J))) RETURN

ENDDD

_0 TO 1oo

Figure A.II FMP FORTRAN Version of AVRX (Cont'd)
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100000

lOOZO0

i00_00

100300

I00_00

100500

1O0600

lO0?O0

100800

I00900

101000

101100

I01_00

_01_00

101400

101500

_01600

101700

101800

101900

10_000

i0_100

i0_00

£0_300

lottO0

10_500

10_600

10_700

_0_800

10_900

£03000

103100

_03_00

£03300

i03_O0

£03500

103600

103730

103600

103900

10_000

£0_I00

_Oq_O0

10430O

10q_00

I0_500

_UBRDUTINE LZNKHO

CDI1HDtl /RRDCOH/PL_9)_FLE(IO)_FLK(9)$T_TS,TL_9)_TSTR(_)

1 _3HL_9)_CLOUD_Z_RE(IO)_RE_TR(3)_FLXDN_RS(9_A_TR(3)_

_C_C_Z_RSURF,_COSZ_RRP_RRH

COIIHDN /CLDCOH/ _HALE_£6)_HIL(15)_AL_I6)_TRUL_Z6)_OZRLE(I_)_
1 TDPRBS

LBGICRL CLDFLG_RERPLGfLZ_L_

RERL TRUCIR_CTRU55_X_PZOfTN_RERl_RER_RERR_RERC_RERU_RERU_

1 EXI_EX_DENU_DNH0_DNHI_RERU_EXTRU_TRU_RONCN_EDNCN_TDFCN,

EUPCN_EDNCN

INTEGER NCLOUD_I_)_NRERO(I_)

RERL CZREXT_Z_),TRUN(I_3)_PICIR(£_)_PIZ(I_lg)_CB_Z_£_)_

£ BTDP(£q)_TDP(£E)_REP(£_)_EUP(I_)_EDH(£E)_TE3(301)_EUPC(I_),

RDDITIDNRL DECLRRRTIONS NOT USED IN THE _IHULRTED PORTION

ARE OHZTTED FOR BREVITY

STRTEHENTS REBUT PRRRLLELISH RRE OHITTED RLSO SINCE LINKHO
IS C_LLED R_ R SUBROUTINE NITHIN THE INSTRNCE_ OF THE

DORLL /LRYERS/ OF CDHP3+ iN THIS CR_E_ ERCH INSTRNCE

CRLLS LINKH_ INDEPENDENT FROH RLL OTHER IN_TRNCES RND

U_ES R LDCRL COPY OF C_DE NITHIN THE PROCESSOR IN HHICH

THE _NSTRNCE RESIDES, EE_UENC_N_ OF THE EXECUTION HITHIN

THIS _UBRDUTINE IS _OLELY DEPENDENT ON THE INSTRNCE RHD

LOCAL DRTR_ NOT ON ANY OTHER INSTRNCES.

DD ZOO LRH = i_i_

DD £00 K = I_3

OO I01 N = i_NLAYR_
HCC = NCLOUD(N/

,:RER = NRERO(N)

TAUCIR = CZREXT_LRH) X CTRU55 _ NCC

X = TRUN<N_K) + TAUCIR

TAUN(N_J = X

PZO =_TRUCIRAPXCXRO_LAH_ + PIZ(LAH_N_)/_+Z,E-_U)
ZP(N._E._) THEN

TN = TL_N-5)/_73.

ELSE

TN = T_TR(N_/_73.

ENDIF

iF (TN._Eo0,_5_ ,RND, NCC,GT,0JPIO=U,

IF_PIO,GT,Z,E-_) THEN

RER£ = £, - PZO

RER_ = 1° - _PIOACB_LRH_N_
RERR = _RT(AER1/RER_)

Figure A.12 FMP FORTRAN Version of LINKHO
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10q600

10_700

lOqSO0

10_900

105000

105100

_05_00

£05300

105#00

105500

£05600 I

105700 ONtll =

IUSS00 EUP(N)

105900 1

106000 EDH_N)

£06100 i

106_00 REF<N)

106300 TDF(N)

£06305 ELSE IF

106310 TOr(H)

106315 REF(N)

1063_0 EUP(N)

i063_5 EDN(N)

105_00 ELSE ZF

106500 TDF(H_=I,U

106600 REF(N_ = 0.0

106700 _UP(N; = U,0

i06_00 EDNkN} = 0,0

107_00 ELSE

107#50 ;F _x

107500 E×TRU

107600 ZT'( =

_07700 TDF(N

i07800 ELSE

i07900 EXTRU = 0,U

£0_000 TDF(N_ = 0.0

£03050 ENDZF

i0_00 REF_N)

10_g00 $1 = l,

_08300 ::_ = ((

10_0P i 0

£0350b EDH(N;

108600 EUP(NJ

IUG?00 EHDZF

10_800

_0_900

RERU = (1. - RERR)/_,

RERU = (1, R RERR)/_,

RERC = SQRT(3,XRERIXRER_)

%1 : -(RERC_X)

EX£ = 0.U

;F (XI .GE. -£_0,_18) EXI = EXP(XI)

ZF _E_I,LT,I,uE-30) EXi=0.0

EX_ = EXI_EXI

DEN0 = I./((RERUxRERU_ - (RERU_RERU_EXE))

DNtl0 = ((BT_P(N) - BTDP(N+I)/_XXRERE))_

(_RERV - RERU_EX_) - (RERR_EXI))

RERU + RERUXEX_

= (BTOP<N)XDNH£ - DNH0 - BTOP(N+I)_EX1)X

DEN0_RERR

= _BTDP(N+i)_DNH1 + DNN0 - BTgP(N}_EXI)_

OENUXRERR

= HERU_RERUR(I.-EXZ>_DEN0

= (RERV-RERU_xDEN0_EX1

(NCC.GT_U) THEN

= 0.g

= 0.0

= BTaP(N)

= _TDP(N_I)

X,_T_I_E-_ THEN

.LE, _5,0) THEN

= EXP(-X_

P_PR0-")UCIBILITY OP TH_
'-_TGTNY; ,, PAGE IS POOR

) = TE_(ITY) • _TY-IT'$_I) A _TE3(ZTY_I)-TE3(ITY))

= U,U

U - TDF_N;

1,0 - EXTRU)/X-TDF(N_) ^ <(eTOP(N) - ETOP(N_lJ)R

,6666)

= BTOP(N+I)_xI+_

u BTQP(H)_XI-x_

DEN0 = I_0/_I.U - RDNCN_REF_N_)

EDt_CN = _EDtICt=-,EUP,_H_xRDHCN_ _ TDF(N_ :,_ OENO '1" EDIJ(N_

Figure A.12 FMP FORTRAN Version of LINKHO (Cont'd)

A-47



£09000
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z09300
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109700

109800

_09900

£10000

110:.00

_10_00

110300

110q00

£10500

110600

£10700

110800

110900

£11000

£11100

£11200

111B00

£11350

111H00

z££500

_11600

111700

111_00

I11900

i£_000

_1_100

11Z_00

11_300

i£gqO0

£1a500

££a600

11a700

11_800

11Z900

113000

1di

11G

£00

_F (NCC.GT,0) CLDFL6 = ,TRUE,

IF(CLDFL6,RND,PID,6E.1,UE-_) RKRFLG=,TRUE,

IF {,HDT,(CLDFL6,0R,RERFL6)) THEN

TRU = TRU _ X

IF (TRU ,_T, 15) THEN

TDFCN = O.

ELSE IF ((_O,XTRU+i,).LT,_) THEN

;TY=£

TOFCN _ TE3(ITY_+(TY-ITY+I)_(TE_(ITY+I)-TE3(ITY))

ENDZF

ENDIF

IF _RERFLG) THEN

RDNEN = REF(N_ _ TDF(NAXTDF(NA_RDNCN_DENO

TDFCN = TDFCNATDF(N_DENO

ENDZF

IF(NCC.HE.0 .OR. FIO.LT.Z.0E-4) THEN

TDFCN = U,U

RDNCN = 0,0

TAU = 0,0

ENDZF

EUPC_N) = EUPEN

EDNE(N_ = EDNEN

TDFE(N) = TDFEN

RDNC(N_ = RDNCN

COIITINUE

DO Zl_ H = N6-£_£_-£

DEND = 1,O/_I,O-RUPCN_REF(H))

KUPCN = EUP<H) _ (<EDN_H)XRUPCN+EUPCN) X TDF(H)xDENU

_F (H,NE,£) THEN

RUPCN = REF(H* • _TDF(H)_TDF(H)ARUPCN_DENO)

L=H-¢

DENU = I,/_£o-RDNC(L/xRUPCN_

PEFUP = kKUPCN _ EDNE(L_RUPEN)xDENU

PEFDN = (EUPCN + EDNC(L)ARDNC(L))_OENO

ELSE

PEFUP = EUPCN

PKFON = 0,0

ENDZF

FE(H) = FE(H) + _PEFUP-PEFDN)_CLKRH

CONT_NUE

CONTINUE

COtlTZNUE

Figure A.12 FMP FORTRAN Version of LINKHO (Cont'd)
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C

C

C

C

:..0o

_oo

C

THIS ZS THE _'CTZDN OF G_$_ , COIIP :_ THRT HR$ _I#.IULRTED

CDI&TZNUE

ENDDO

DDRLL j_JI4_;=X_Zl4

;14_ = iH

_L_E

iH_ _ 2

_NDX_

DD ZOO L = _NL_'_

CDRXDL;_ FORCE

DORLL J=_JIII4Z_I=Z_Z|4

;F <;,E_,Z} THEN

;14_=ZH

ELSE

;HZ = i

END;F

DO _O0 L=_HL_(

HERE THE COtltIDN _U_CRZPT E_PRE_;ON_ ARE t_OT GXUEN

_U7 THE CBttPZLER ;_ R_UHEO TQ HRUE KXTRRCTED THEH RPPROPRT_TELY,

REPROII_U_ILITY _ THE

ORIGINAL PAO]_ IS_. R

RLPH = FXCLI x _.P'(Jf'Z)'rP,.J-b.,Z}}'K_.FD_,.J_'Z')_F_J';.J-b._

UT..J_,,.14.L,_L,. = U';_J¢_.HZ,_LI "r I'_LFH_U(J_/II.L,_L..

UT_J_,'tI.L_Lj :-: UT,.._t_tH.I._L,t - HLPH_U_.J_ /|I; ..L,,

CDII7 _ I4U_

rtlDOD

Figure A.13 FMP FORTRAN Version of Part of COMP2

A-49



o

iUq6u0

_0q?00

_Vq600

Luq9¢0

.V5100

;05_00

_uS_00

_v5q00

.u5500

_05600

_u5700

_v5600

_u5900

¢06000

_06_00

_OC_O0

_OG300

_06qO0

106500

_OG600

_V6700

_G6_00

_uSgO0

_07000

_uT_O0

_0?Z00

_U7300

_07400

_07500

_07600

c

c

3,00

C

c

c

uERTICAL RDUECTIOI| OF THERIIDBYIIRHIC ENER@Y

COItP ._ crtIITIHUE_ BEYONO HERE, THI_ i_ THE END OF THE PIECE _IHULRTED

Figure A.13 FMP FORTRAN Version of part of COMP2 (Cont'd)
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A. 5.4 Results

Table A. 6 shows some of the assumptions and summarizes the results

of the analysis. Table A.7 shows a more detailed breakdown of the

analysis by subroutine.

This is a worst-case analysis, in that the data dependent branches

were assumed to demand the most computations. _]is was done in

order to estimate the worst-case maximum running time of the GISS

weather code. _ose weather conditions that result in faster run-

ning, such as clouds that reduce the amount of radiation

computation needed, will result in a faster total run for the

whole program. They also result in fewer computations actually

performed.

An interesting detail of the analysis concerns the assignment of

instances to processors. In the prototype compiler, instance

n_nber is computed as described in the section on FMP FORTRAN, and

instance number i is processed in processor n_aber (i mod 521).

That is, at the beginning of the DOALL, processors 0 through 511

are given instance numbers 0 through 511 to do, and then each

processor increments instance number by 512 to find its next

instance to do, until all instances in the DOALL are exhausted.

In CO_IP3, a major contribution to whether a given instance will

run for a long time or a short time is the condition of night vs.

day. Radiation computations are much simpler on the dark side of

the earth. At the equinox, computations would be for daytime

along 72 meridans, and for nighttime along 72 meridians. As the

DOALLs are arranged, with latitude subscript J first, all

processors do daylight instances together, and all processors do

nighttime instances together. This argument is somewhat

oversimplified, because of dawn and twilight effects, and must be

modified for other seasons where all points around one pole are in

daylight, and the other are in darkness. However, more detailed

analysis still confirms that, for the GISS weather, the

straightforward assignment of instance number to processor number

results in nearly equal distribution of not only daytime and

nighttime within each individual processor but also latitude,

thereby helping to distribute the computational effort evenly

among all processors, and tending to make them finish nearly all

together at the end of COMP3.

A. 6 SPECTRAL WEATHER

A. 6.1 Summary

The spectral weather is expected to run with substantially higher

throughput than the GISS weather does. Its fluid dynamics

portions are done by spectral analysis, with each processor

processing an FFT independently of all other processors. (_)r a

discussion of the case that only one FFT is to be executed in the

FMP, see Section A.7.) Thus, the fluid dynamics computations are

much more locally contained, since all the intermediate results in
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TABLE A. 6

I_n_puts Parameters
Grid Size =

Time Step =
Total Time

Total Time Steps =
NCYCLE =

NHOGAN =
NCOMP3 =

Ou_q_ut Result Totals
Fo-i-6--_/EU =
Max Time/EU =

Flops/Systems =

Gflops/System =

89 x 144 x 9

20 minutes

14 days
1008

6

5 Radiation call frequency
3 Physics call frequency

2.88 x 108

4.42 minutes*

1.41 x i0 II

0.532

* Does not include system startup time
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the FFT can be contained within processor memory. The chemistry

and physics portions of the spectral weather code are

substantially identical to those of the GISS weather code, and the

analysis of one can serve as the analysis of the other.

Therefore, the fluid dynamics portions of the spectral weather

code are expected to run somewhat better than the fluid dynamics
portions of the GISS; the chemistry and physics portions would

have the same throughput exactly. (This ignores the effects on

throughput of individual programming style, assuming that the
spectral weather style is no better nor worse than the style seen

in GISS.)

The FMP FORTRAN of Figure A. 15 shows the essential portions of
subroutines GDSPCI and FFTFOR. It is clearly efficient. The

inner loop in particular has only singly indexed local variables
and a substantial proportion of multiply-add operations. A char-

acteristic of all these loops is a short string of integer

operations after the index test and before any floating point

operations start. A characteristic of all these loops is a short

string of integer operations after the index test and before any

floating point operations start. The slowdown due to integer
indexing that appeared in BTRI does not appear here except in DO

317 loop in GDSPCI (see Fig. A.15) which is done N times, whereas

the inner loop is done N'LOG N times.

All local variables, including the local arrays, are substantially
less than the 4096 words of address space that is accessible rela-

tive to the stack pointer, and which is reserved to subroutine

local use. Such examples support the decision to have relatively

short address fields within the instruction.

An estimate of 0.6 Gflops/sec was made for the spectral weather
code. This estimate is not yet based on the detailed analysis

performed on the other codes. The estimate is based on prior

knowledge of the chemistry and physics portions of the GISS
weather and an initial evaluation of the efficiency of execution

of the FFT portion as described above.

A. 6.2 FMP FORTRAN Version of FFT Portion of Program

In the MIT spectral weather code, the FFT appears as subroutine
GDSPCI which calls on subroutine FFTFOR. GDSPCI takes NN arrays

of data, splits each array's odd and even parts sy_netrically

about the center index, and rearranges the odd and even parts into

real and imaginary parts of an array of complex values. FFTFOR

then performs NN fast Fourier transforms on the NN )mplex arrays,

producing NN transforms.

NN is equal to the number of layers times the number of meridians.

In a model with 144 meridians, 89 latitudes, and 12 layers, NN =

12 x 144 = 1728 transforms would be performed at once.
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100000
lOOiO0

i0_00

100300

i00_00

I00500

i00600

i00700
i00800

Z00850

100900
lOlO00
101100
101400
i01500
101500
£0i700

101800
_01900

I0_000

£0_i00

10£300

102_00
I0_500

I0_600

£0_700
I0_800
iOZ_O0

£03000
£03100

103_00
I03300

iO_qO0

i03500

103600

103700
103800
_o39on

£o4ooo

I0_i00

£0_£00

lOq300

c
c
c
c

c
c
c

c

c
c

c
c
c
c
c

316

317

c
c

c

FHP F_RTRRN VER_IDN DF F_URIER TRRNSF_RH PffRTI_N

OF HIT SPECTRRL _ERTHER

_UBRDUTINE _DSPCI_DSPEC_DRTRRL_DRTRZH_NLEV)

CQtIHUH /FFT/ _P<7_7_IL_N<g_7)_NTRRNS(16)_LRZ_NLRTNF_

1 N_PRR(_)_L_GN

COIIHUN /FTCET/ N_NLRT

STRUCTURE DRTRRL(_)_DRTRIH(1)_D_PEC(I>

DQHRIN /_PRCE/|IN=Z_N;Z=I_NLRT|L=ZfHLEU

_IHPLIFY C_DE BY RSSUNZNG N EVEN F_R THE TZHE _EIN8

RE_IUN /LRTLU£_<Z=Z_NLRT);(L=I_NLEV/Z>)/=/$PRCE(_sI_L)/

Z_DD = H_D(NLEV_)

NL_ = NLEU/_

C_HBINE THE DRTR FRDH LEUEL• RND LEVEL NL_+_

RNO FRDH LEUE_ _ HZTH LEVEL NL_ ETC, _NTU
THE RERL RNO _HRSINRRY PRRTS UF THE DRTR INDEXED
DN LEVEL, THE FF_ I_ THEN D_NE _N THE COMPLEX
DRTR HHICH I$ THEN UNRRUELED IH SU_RDUT_NE
SPCED1

D_RLL/LRTLV_(I_L;/ _ US_N_ DRTRRL
DD 316 IN = I_N

DRTRIM_IN_I_L) = DRTRRL(ZN_I_L-NL_)
ENDD_/LRTLV_/ ; _IUING DRTRIH
CRLL FFTF_R_DRTRRL_ORTRIH;
DDRLL ,'LRTLU_(I_L)/ _ U_IN_ DRTRIH_DRTRRL

S_ 317 IN = I_N
DRTRRL<IN_I_L_NL_) = ORTRIH<[N_L;
DRTRIH(_ti_I_L_NL_) = U.DO
DRTRRL(INfI_L_ = DRTRRL<_N_i_L) + DRTRIH(IN_I_L_NL_)

DRTR_H<IH_I_L; : ORTRIM(_H_I_L) - DRTRRL(IN_Z_LcNL_)
C_NTINUE

ENDDO/LRTLU_/ _ GIVZNG DRTRRL_DRTRIM
CHLL FORSPC(DSR£C_DRTRRL_DRTRIH_NLEV)
RETURN
END

RLTERNRT£ ENTRY SPC_DI z_ VERY _ZHILRR_ UHITTE_ F_R N_N

Figuze A.15 FMP FORTRAN Version of GDSPCI and FFTFOR
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10q5o0

£0_600

1o_7oo

£0q9oo

105000 c
£05£00 C
i05_00 c

£05300 c
£05350
105500

_05600

105650

£05700
105800
£05g00

106000
£06£00
£06_00 £_
106_00 c
106400
106500
106600
106700
106800
£06900
107000 £5

£07£00 c
107_00
£07300
£07400
£07500

£C7600 c
£07700 c

107800 c

£o79o0 c

£08000 c

£0_1oo
£o_oo
£0_300
£08400
106500 C
106600 c
£08700 c
i08800 C

_UBRnUTINE FFTFOR(ORTRRL_DRTRXM)

STRUCTURE DRTRRL(1)_ DRTRIH(£)

O_UBLE PRECISION NP_N_N_

CO/IHON /FFT/ HP(7_7_£5)_N(_7)_NTRRNS(16)_LRZ_NLRTHF_

tIGPRR(?_L_GN

CQHHDN /FTCST/ NpHLRT

FOR BREVITY, THIS EXAMPLE X_ SIHPLIFZEO TO THE FQRNRRQ

FFT ONLYf L_RVZN_ THE REVERBE TRRNBFORH TD BE RDDED LRTER

D_HRIN /SPRCE/¢IN=£_N;X=i_NLRT;L=i)NLEV

DDHRZN /LRTLU_/; I:£_I4LRT; L=i_NL_

INRLL /LRTLEU/ DTRL(15)_DT_H(£_)

O_RLL /LRTL_U<I_L)/_ U_NG DRTRRL_DRTRIH_/FFT/_/FTCST/

no 32 d=i_N

OTRL(4) = DRTRRL(NTRRNS(4)_L)

DTIH<J) = DRTRZH_NTRAN_(J)_I_L)

DTIH(NTRRNS(J)) = DRTRIH(d_I_L)

OTRL<NTRRN_<J)) = DRTRRL_JsIS_#

TEHPR = DTRL_xJ-¢) ¢ DTRLk_xJ)

TEHP! = DTIH(_XJ-=) _ DTIH(_XJ)

DTRL(_xJ) = DTRL(_xJ-i) - DTRL(_x4)

DTIH(_XJ) = DTIH(_kJ-£) - DTIH(_XJ_

OTIH(_J-¢) : TEtlPI

DTRL_xJ-_) ; TEHPR

DO 90 ZI = _,LOGN
t&UH = _xxlI

NUHHF = NUH/_

N_S = IA_XX(LBGN-II)

THE ABOVE EeURL_ N/NUH_R$ _HDHN ZN THE ORI6INRL PRO6RRH_

BUT PDNER_ OF _ RRE NUHERIC _HZFT_ tlUCH FR_TER THAN R

DZVZDE

tlUHJK = NUtI_(J-¢)

_L = £+NUHJK

HH = LL_HUHHF

t|OTZCE THE DELETtOH FROH THE_E VARIABLES or OFF_ET_

CORREEF_NDZNG TO THE DDHRIN URRIREL£_ HHZCH APPERRED

_N THE ORIGINAL

Figure A.I5 FMP FORTRAN Version of GDSPCI and FFTFOR (Cont'd)
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II1360 c

111370 C

111380 C

II£_90 C

111480

111580

£I1600 lOO

111700

111750

iiI_00

TEHPR = DTRL(LL) _ DTRL(HH)

7EHPI = DTIH(LL) _ DTIH(HH)

DTRL<HH) = DTRL<LL> - DTRL(HH>

DTZH(HH) = DTIH_LL# - DT_H(HH)

DTRL(LL) = TEHPR

DTIM(LL) = TZHPZ

DO 90 K=_NUHHF

LL = K_NUHJK

HH = LL T NUHHF

HHH = t&SS_(K-_)

H_ = -N_sHHH)

14OTE THRT THE RBDUE NOULD BE CQNDZTIONRL SISN IF REUERSE FFT

CRQSSR = DTRL<HH; X N_I_IIHHJ + DRTRIH<HH_N_

CRgSSI = DTIH(HH) _ N_I_HHH) - DRTRRL(HH)_NZ

DTRL(MR> = DTRL(LL) - CRDSSR

DTIH_HH) = DTIH(LL_ - CRBS_I

DTRL(LL) = DTRL(LL# T CROSSR

DTIH(LL; = bTIH(LL_ ¢ CRDS$I

CONTINUE

Dn IO0 II=I_N

t]ORHRLIZE RND PUT BRCK IN STRUCTURE VRRXRBLES

DZUZDE e'{ _X_LDGN IS R SUBTRRCT £ROH EXPONKN_ s

RUNS HUCH FRSTKR THRN DIUIDE BY N

DRTRRL(IISI_L _ = DTRL<II)/ZXXLD_N

DRTRIH(ZI_Z_L_ = DTZH_IZ) ,' _x_LDGN

C_NTINUE

RETURN

ENDDO/LRTLKU/_ _IUING DRTRRLsDRTRIH

END

Figure A.15 FMP FORTRAN Version of GDSPCI and FFTFOR (Cont'd)
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The obvious, and simple, strategy is to have a DOALL on layers and

longitudes, with each instance performing a serial transform.

That is:

DOALL I=i,144; L=I,NLEV

... here the code for a serial fast Fourier transform

ENDDO

One of the optimizations in the original program needs to be

undone in order to separate the loop into a large DOALL and a
short DO loop. The original version took the multidimensional

arrays that naturally appear in the problem and unwound them into
one-dimensional arrays. Thus, a substantial amount of index

computation was saved by doing the index calculations separately.
In order to make best use of the FMP, the structure inherent in

L_h,l_rcb_q_ :Be_s to be retained.

l_e FMP FORTRAN version shown in Figure A.15 includes the conver-

sion from space variables to complex function, the forward Fourier

transform (complex) on the complex function, but omits the
conversion from complex function back to real frequency functions,

and also omits the reverse Fourier transform, since both of these

are trivially different from the code that is exhibited.

The arrays DATARL and DATAIM in the original FORTRAN version are
used both to hold the entire input and output files of the

transform, and also to use as working space during the course of
the transformation. In this FMP FORTRAN version, two STRUCTURE

arrays DATARL and DATAIM are used to hold the entire input and

output files before and after the transformations, but two LOCAL

arrays DTRL and DTxM are used as the working space during the
course of the transformation.

Each processor is doing one FFT serially. There are as many FFT's

being executed as there are points around the equator times the
number of levels. The code as exhibited therefore would be

efficient only for grids somewhat finer than the 16 latitudes x 24

longitudes of the MIT code as submitted.

The following list gives, in sequence, the variables that are

candidates for being assigned to registers. This list covers

subroutine FFTFOR only.
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INTEGER REGISTERS FLOATING-POINT REGISTERS

Stack pointer

Base address DATARL
Base address DATAIM

Cycle index for IN ALL

J
Base address of common/FTCST/

N

Processor no., for DOALL control
I

L

N/2 (loop limit)
2*J (common subexpression)

2*J-i (common subexpression)
Base address of common FFT/

II

LOGN

NUM
NUMHF

NSS

NUMJK

LL
MM

K

MMM

2**LOGN (common subexpression)

TEMPR

TEMPI
W2

CROSSR

CROSSI

In addition to the above list, some scratch and accumulator regis-

ters need to be assigned (some double length). As was observed in

the analysis of the explicit code, more integer registers would be

needed to avoid saving and restoring them. The number of floating

point registers is adequate.

A.7 OTHER ANALYSIS

As an example of additional applications, this section will

discuss two application areas that fall outside of the benchmark

programs. The first section discusses how well the FMP would do
on FFT's when only one FFT is being done instead of 512 FFT's

operating efficiently in parallel as in the spectral weather.

A.7.1 Fast Fourier Transforms on the FMP

A.7.1ol Discussion

This section makes some preliminary estimates of the through-

put of the FMP executing a single FFT across the entire array. If
data length is assumed to be a power of 2 and at least 512 long,

the resulting throughput is estimated to lie between 0.6 and 1.0

Gflops/sec. The exact throughput figure is dependent on the

algorithm selected for the FFT. This section is a discussion of

the algorithms, and a description of how they operate. An FMP
FORTRAN version of one of the algorithms is presented.
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Algorithms which have the final result stored on "scrambled"

indices were developed to allow in-place computation to save

memory. The data interactions in these algorithms correspond to

swapping data between the upper half and the lower half of some

subset of the data, the subset being a power of 2. At the end,

the scrambled data is stored in memory, the indices are

bit-for-bit reversed (so that 0000011 becomes 1100000), and the

reversed indices are then used to reorder the resulting data.

Other algorithms, such as Glassman's [4], require that the data

interchange in the body of the algorithm be a perfect shuffle.

There is no rearrangement required at the end.

For a 512-point FFT the computations would be fully parallel

across the processors, and the swaps, shuffles, or rearrangements

would take place on all data. For the 512-point case:

For the "scrambled" algorithms, there are 9 swaps and 1

rearrangement.

For the Glassman algorithm, there are 9 perfect shuffles.

For FFTs with more points than 512, the amount of data being

swapped doubles, and the number of swaps goes as log2(N), while

the number of multiplications and additions is proportional to N

log2(N). There are exactly I/2N log2(N) complex multiplications

in the Glassman algorithm, for taking the Fourier transform of a

real variable (since the odd and even parts of the real function

can be combined into the real and imaginary parts of a complex

function defined over half as many points).

Thus, the time required for each of the following needs to be

considered.

o Swapping N/512 items of data

o PERFECTSHUFFLING N/512 items of data

o REARRANGING N/512 items of data

The times for the above would then be inserted into a formula

where SWAPping and SHUFFLing are multiplied by log2N. As a first

approximation, these times would be added to the time taken for

computation to get the net time for an FFT. The result is that

the "scrambled" versions of the FFT run substantially better on

the FMP, since the SWAP is the SHIFTN operator, while SHUFFLing

and REARRANGING are stores to EM followed by fetches from EM.

%
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A. 7. i. 2 Timing Estimates

Within the inner loop of an FFT, all processors do the same compu-

tations, and hence will stay in synchronism. Any synchronizations
required do not imply any significant time wasted waiting for the
slowest processor.

A SWAP consists of:

N/512 SHIFTN instructions, at 12 clocks each.

A PERFECTSHUFFLE consists of:

N/512 STOREMs. Each STOREM occurs in its proper place

within its own instance; not as a string of successive
STOREMs. Hence processing can be concurrent with the
write to EM.

NEXTDO (the splitting of a DOALL into two successive

DOALLS) requires the termination of the instances, a

synchronization, and the hidden cycle loop of the subse-

quent DOALL. Hence, the following code is executed in
the processor,

IJUMP % end of instances

WAIT % processor side of the synchronization

IMOVEL % cycle loop variable initialization

IMOVEL % cycle loop limit

ITIX % cycle loop

which has a total of 13 clocks (before correcting for overlap
and instruction fetching).

N/512 LOADEMs. If the STOREMs are to EM modules _Jith a skip

distance of 2, the perfect shuffle has the LOADEMs at a skip
distance of i, which is one of the '_magic" skip distances at
which the CN has no conflicts.

The final formula for timing, in terms of number of clocks,

using TEM to indicate the number of clocks per EM access
(include address computation) is_

Tps = 2(N/512)TEM + 13

A REARRANGING of the data on scrambled indices consists of

N/512 STOREMs, all occurring in succession, followed by the 13
clocks of the NEXTDO, followed by N/512 LOADEMs. The STOREMs

are in succession, so EM module busy will keep them at least 9
clocks apart, but the "EM busy" of the last STOREM can be

hidden behind the 13 clocks implied by the NEXTDO.



In addition, the subscriptlng on scrambled indices, bit
reversed, is the worst possible permutation for CNconflicts.
It will take 16 times CN access time plus EM cycle (144
clocks) to get all 512 requests through. These additional 144

clocks are approximately the same whether the bit reversed

scrambled indexing occurs on the STOREM or the LOADEM. A
formula is thus

T r = 2(N/512)(TEM + 144) + 13

The time added to the entire FTT by these operations can now be

computed. Remembering that there are log2N passes through the

inner loop, time for the "scrambled indices" algorithm (after
reducing the formula) is:

T = log2{(N/512)*12 + 2(N/512)(TEM = 144)

For the perfect-shuffle (Glassman) type, time is:

T = Iog2N(N/512)*TEM + 13 log2N

These are the times spent in data rearrangement. In addition,

there are (N iogN)/1024 complex multiplications and additions per

processor, or 4 N log2N floating point operations per processor.

Simulation shows that real programs that are fairly well adapted
to the FMP run at about 1.3 Gflops (AMATRX, BTRI). This is about

9.8 clocks per floating point operation. If the rest of the FFT

does as well, the time spent in computation is 39.2 log2N(N/512)
clocks.

Table A. 8 shows these numbers, together with an estimated through-

put rate (in Gflops) for the FFT assuming that there is no overlap
and that otherwise all the above assumptions hold. An estimate of

35 clocks for TEM was used to cover address computations, CN
delay, and EM access time.

A. 7.1.3 FMP FORTRAN Version of Glassman's FFT Algorithm

Figure A.16 is an example of a FFT coded for the FMP. The

attached FFT is Glassman's algorithm, and does not scramble the
indices.

The FMP FORTRAN in Figure A.16 is a rather direct translation of

an existing ALGOL program (Figure A.17). In translating from the

ALGOL to the FMP FORTRAN, it is likely that the result is not
optimized for the FMP. Specifically, the perfect shuffle in this

particular code consists of fetching the Z items on shuffled

indices into an INALL array, then the NEXTDO for finishing all
instances for data precedence, and then four successive STOREMs.

Successive STOREMs are not overlapped as they would be if mixed in

with computation.
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Type of FFT

Table A. 8

Summary of FFT Throughput Estimates

data-shuffling

time (from

formulas in text)

as s umed

comput at ion
t ime

total

t ime
Gflops

(approximate)

"sc r ambled" N=512 466 257

N=I024 956 514

N=2048 1470 1028

N=4096 2008 2056

723

1470

2498

4064

0.474

0.466

0.549

0.675

"G1 as sm an" N=512 431 257

N=I024 830 514

N=2048 1298 1028

N=4096 1836 2056

688

1344

2326

3892

0.498

0. 510

0. 589

0.704
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This program runs for any binary value of N whatsoever, but is

efficient only for N equal to 512 or greater. [[_,e language is

completely independent of the number of processors.

The ALGOL program of Figure A.17 is a free-standing program, which
reads in a data deck and prints out the transform. It was written

for demonstration purposes, to show that the Glassman algorithm
had indeed been understood and programmed. For the FMP, it is

assumed that some main program supplies the data and uses the

results. Thus, all of the I/O and some of the initialization has

been sloughed off onto this assumed main program and does not

appear in subroutine GLASMN.

A.7.2 A Parallel Sort

Sorting is a common computer application. This section
demonstrates an in-core sort that makes use of all processors at a

reasonable processor utilization. Seldom are the items to be

sorted simply numbers to be sorted by magnitude; however, this is
the easiest example to use to show how the algorithm works. The

algorithm starts from a state in which the items to be sorted are
distributed uniformly among the processors. "Processor" could

mean either processor local memory, or a piece of EM address space

allocated to a specific processor. The algorithm will work for

the number of processors (2 n) equal to any power of 2. The

example will be given for a number of processors equal to eight.
The starting condition for the example is given in Figure A.18.A

The succeeding steps in the algorithm go as follows:

i. Sort the items local to each processor, yielding the

state of Figure A.18.B.

20 Determine the median value globally. One method for

doing this is to guess at a median, and then count how

many items are greater or less than this guess. The
total count is given by means of a SUMALL function on the

individual processor counts. If this guess is not close

enough to the median, one makes a new guess, and finds a
new count. This procedure iterates until a value close

enough to the median is found. Each processor divides

its pile of sorted items intc two parts, one larger than
the median, one smaller than the median. This division

is marked in Figure A.18.B.

Swap parts between processors that are 2m (m = n-l)

apart. The lower nun_ered processor of each swapping

pair sends the higher of its two parts to the higher
numbered processor, and the higher numbered processor
sends the lower of its two parts to the lower numbered

processor. After the swap the contents of the various

processors are like F4guz - A. 18.C.
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_00000

_U0100 C

100_00

_00300

100500

_00600

_0(_650

100700

_00500

100900

_u0950 c

_u0960 C

_00970 C

100980 c

100990 C

101000

101050 C

101060 c

_01070 c

101100

z01_00

I01Z50 C

101_60 C

I0£Z70 c

10130O

101400

101500

i01600

101700

I0±_00

101900

101950 c

10196O C

1O197O C

10Z000

i0_£00

10_00

10_300

IOZ350 C

I0_360 C

I0_370 C

10Z380 C

_UBROUTIN£ _LR_HN _N,;_tI_Lr_G:_N_

A_UttK DYNAMIC ARRRY DECLRRRTIONS

COItHON /FFTDRT/Z_H_)
LDGiC_L _H

;HTEGER 14_ LUG_N

_ERL PH[_D_E

DDIIRIN / KI'( / l IK._.U ,_N-._.

; NRLL/I_K/H

DO|tfilN /JJ/| JuU,_I,I/_-._

INRLL /J/ R(4,

INTEGER I_ K,_ U_ fi

THE _r_LLD|I_NG FDRH |lR_ CHrl_EN T M TREE RDVRNTR_E DF THE FRDE×

CrlHHRND NH_CH I_ 14UCH F'R_TER THRN FD_ FrIR DIVI_IQH rlF

INTEGER FDNER DF _.,

PHI = 6,_31_5_07_/_kt<LOG_:N

THI_ DD LOOP INITIRLIZE_ THE THIDDLE !_RCTORS

DrtRLL J_U!,N-J.; U-_.ING PHI_I,I_-_I.,I

IF" _J,LT,II+"'"_ THEH

CD_;INES ZN LrtlIER HRLF DF N RRRRY

I.,IKJ) = CO'_:4I'-'HI_(J)

ELSE IF 4_N) THEN
14_.J) :J 3. ZI,I(PHI:k(J-,W/_'.)

EL._E

H.,J) :-: -_ZN.,FHI_:(J-N/_))

EHDIF

ENDDn_ GIUING N

_NIT_RLZZRTIDN, IN NHHT FDLLDN_ D>_ RLi_RY$ £(_URL$ 1,1/;"

O = N/_

DO 100 Ji = I_LDGPN

DDRLL/JJ(J)/_ U_: IN6 Z_,N_D

THE DD||RIN _ DIVIDED INTO _ BLBCI.(_ [_P [3 ELEHENTS ERCH

RNO O RRE B_TH PDHER5 OF

Figure A.16 FMP FORTRAN Version of Glassman's FFT Algorithm
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Figure A. 16

L£ = d/O
L = ,J - LZAD

d ZN THI_ LUDP I_ E_URL TO I OF THE SERIRL PRDGRRH -1 RND /2
HEI"|CE RLL U_E ElF I IN THE RL6[_L ;_ REPLRGED BY d HERE

EGURLS (OLD V,'Z)/_ 9 R PERFECT SHUFFLE

l< = HDD(J+LiXD+Z_N) - .L

U E(_URLS _nLD U-.L;/::'

U = K . 0
G = LiAb

B£ = Z_Ug.L/AN(_) - Zi:Ug;-_)'_kN(_3+N/_)
_F. = _(U_.;.)AN,.6+N/E> + Z(U_,,xH(_)
R(I) = Z(E(g£,, "r B1

R(q) = Z(l<,;_) - f_;"

RE_'{NCH HERE T_ USE URLUE_ CDItPUTED TO THI_ PDZNT

IIEXTDD

Z(d_.;.) = R(£)
x<o_:') = R(E)

;Z(d'rN/2_,£) : R(3_;

Z(J'_N/P_ P) = H(q,,
EHDDn /dd/9 _ZVZH_ Z

O = 0/_

RLL INTE6ER DIVIDES RND HULTI_LZES BY PnHERS nF _ RRE SHIFTS

_: = PxS

END DF Ji LnBp

CnNTINUE
RETURN

TRRNSFDRHED DRTR IS LEFT IN /FFTDRT/ CDHtlnH9 RLIR_; THE Z RRRRY

END

FMP FORTRAN Version of Glassman's FFT Algorithm (Cont'd)
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BFGIN
INTEGER GAMMA,SPICE,S,V,G.UwD_FI,F_Fb,FX,NUMtJIwM_K|_N,N3 ,

NItJ,LeLRECLpLRFC_NN_F3,SW|,K,LI_I;
PEA L ARrAy ZCO|5|JI,A [O1511),w{Ol_5_IpY{O1255|l

WEA PH C_DEL! RiwH_wTll
FORMAT !_ (XI,_}NPUT ,JS,"R_AL SAMPLEBIPERIOD.,FS._,.UNITS.),

_.(X}&_IN_UT ,JS,_COHPLEX SAMPLES;BERIODW_FBo_wwUNITBN)_
.}tx_w MU_ MANY CO.PONENTSeNe ABE DESIRED AND WHAT SHOULD BE"e

THE INTERVALn/Xb,"BETWEEN SAMPLESp SPACE NU"wjSw

.. . L UDES ,X_, _WFR /X3, OR CPS ,X6, XlOOb ,X_,
DB ,XII,"OR CPS",W6,nX$OOO",X_"OB")_

RII(X_,_TH_ INTERVAL I$"_FIO,b_NUNITS")_

FILE CARDCKINO= RE_DER);
FILE LINE(KIN_=PRINTER];

MONITOR LI'_E(O,S);
PROCEDURE G[TDATA;

BEGIN ,
FOR J,=| STEP | UNTIL FX DO

BEGIN
IF((J-FX) LEO O] ?HFN

_RITF(LINE,_FOR K :_ 0 (KI -$)
FOR L 1= 0 STEP I UNTIL

BEGIN

IF(CV NUm*SPICE*N*F$ ] LS$ O) THEN
IF((V-|) _OD (NUM*$PICF) EQL O) THEN
BEGIN

F3I=(F_ MOO N)_ 1;
ZI2*F3-2]I= Z{2*F3-2] + AIL];

END
ELSE

LI= LRECLI

END_
REA_CCARD, _13, NI,TI,S_I_N,SPICE,LRECL];
IF(G_I EQL O) THEN

WRITE(LINE,RI,N,Tt)
ELSE

WRITE(LINE,_2.N.TI);
WRITE(LINE_R_,N,SPICE)I
PHI I='B.2831853/NI
CI= 20./I.OG(_O.)ILRECI= LRECL I;
DFLF:= I,I(_*Ti*SPICE) ;
F% I= (Nt)DIV (N,SPICE];
IF (8al EQL 0) THEN

hum I= l
ELSE NUM $= 2;
F_ t= (NUM*NI÷L_EE) DIV LRECLI
F_ := (N nlv a) ÷I;
F6 :=(2*N_ 5) OIV O;
HI= N OIV 2;
K1 := LRECL;
GAMMA l= LOG (N) / LOG(?) ÷ ,11

OS=s,.
GETDATA

wRITE(LINE,P8, FOP J s= 0 STEP I UNTIL N3 DO Z{J|)l
FOR j S= 0 _TEP | UNTIL M.I DO

BEGIN
wlJ] :=COS(RMI*J)J
IF(S_I EQL O) THFN

_(J÷_) l= SIN(PHI*J)

Figure A.17 ALGOL Version of Glassman's FFT Algorithm
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i
ELSE

W[J4'H] I= " SIN(PHI*J)/
END;

wRITE(LINE,RS, FOR J /= 0 STEP I UNTIL 2.N-I DO Wtjl);

,oR ' STEP ONTIL oo
FOR LI *'= I STEP I UNTIL S DO

BEGIN
FOR L lu I STEP ! UNTIL O DI1
BEGIN

I*= E*L+2*(LI-1 )*D-l;
K I= 2*((L_tLI-1)*D.2) HOD N)-II
LJI= K+E*D!

I: (LI.'I)*DI
B12= Z [Ull]tW [G]'Z [U] *l_ [G4.M]

B2$=Z [U-1]*N [G4'M| 4'Z[U] _l, [G] ;
A [I'=1] 2=Z[K-t]4"81!
A(I]Ss Z[K|4,BE/
AfI4'N-1]2" Z[K-11"uz;
A[14'NI 2= Z[K|-8_I

ENd7 D,

WRITE(LINF,R8, FOR J 2= 0 STEP 1 UNTIL N3 O0 A[J]);
O 2: O OIV 21
Sl= S.E;
FOR J$= 0 STEP 1 UNTIL N3 DO

BEG_N

E4_J,_,. 2= 'tJ],
ENO/

FOR J 2= 0 STEP I UNTIL N=! DO
BEGIN

Yt((J+H-t) HOD N) 4'1] 2= SgRT(ZCE*j4'I]**2 4' Z[E*J]**2)/(FI*N)I
w[J]|= (J-M-I)*OELFI

EN_RITE[L_NEwR8pFOR"" J!= 0 STEP ! UNTIL N-1 DO Y[J])!
WRITE(LINE-[SPACE u,] )t
WRITE (LINEeR_]I
wRITE(LIN_tSPACE 2])1
FOR J2= F_ STEP 1 UNTIL 00

BEG_Ny * ,,( [2 J 2'] EQL O) THEN
WRITE(LINEeR5eWt2*J..i]oYtEtJ=2],_t;_,J]eY[E_j*.I|eC*LOG(Y[E_j-1]))

ELSE ,,
WRITE (LINEeRb,W [2*J 1] w.Y [2*J.'2] .C_LOG(Y [2"J'2] ),

w tE*J] ,Y tEwJ'I] ,C*LOG(Yt2*J 1] ));
END;

WRITE(LINE[SP_,CE o13!
WRITE (LINEeRI I,OELF) ;

END

Figure A.17 ALGOL Version of Glassman's FFT Algoritm (Cont'd)
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Figure A.18 Example of a Sort Algorithm Using 2 N Processors
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3.

4.

5.

Sort again within each processor.

Divide the range over which the median is to

half, and find separate medians for each half.

is now Figure A.18.D.

be found in

The state

Decrease m by one, that is, divide the swapping distance

in half, and swap again. The result is Figure A.18.E.

6. Repeat steps 3, 4, and 5, finding medians over ranges

which are divided in half each time, and swapping over

distances which are divided in half each time, until the

swappping distance is reduced to one. For the example

with eight processors, step six goes only once, producing

the result shown in Figure A.18.G.

7. Sort again in each processor.

Processor utilization depends on the uniformity with which the

data is distributed among the processors in the intermediate

steps, since the data is equally divided among all 2 n processors

both at the beginning and the end of the algorithm. As an

example, consider the sorting between the states of Figures A.18.C

and A.18.D. Assume that the amount of time taken in a single

processor is proportional to NlogN. Processo_ No. 4 has 6 items,

and takes a time proportional to 61og6. Processo_ 0 has 2 items

and takes a time porportional to 21og2. The total time spent

working is proportional to 56.66 while the longest processor time

times 8 is 86.02, giving a processor utilization during this step

of 65.9 percent.

_N!z_

A-72

The actual FMP has 512 processors. Again, in the first and last

step, data is uniformly distributed among the processors. In the

intermediate steps, there will be some spread. If data were

randomly distributed among the processors it would take on approxi-

mately the Poisson distribution, and the amount of data in the

fullest processor could be estimated from that. Given that there

are an average of N items per processor, in the Poisson case the

processor with the most elements would have about N+3N½ elements

for N large enough. For N=I0, a table of the Poisson distribution

shows that one processor Jn 512 is expected to have 19.8 elements,

whereas the approximation for N large gives 19.5.

Finally, an interesting observation: if the items to be sorted

happen to be in inverse order, it turns out that the distribution

among processors remains uniform through the entire procedure, and

processor utilization is i00 percent.
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APPENDIX B

FMP CONNECTION NETWORK - ANALYSIS AND EVALUATION

B.I SUMMARY

A connection network (CN) is to stand between the 512 processors

and the 521 EM modules and is to satisfy these requirements. The

connection network would accept requests from the processors,

possibly all 512 simultaneously and establish connections be-

tween the requesting processor and the requested EM module at EM

memory speed. A crossbar switch between processors and memory

modules can provide this function, but at a terrible cost in hard-

ware. It has N 2 crosspoints where N is the number of ports along

one side.

This appendix describes a connection network based on the Omega

network (described below and in [4]. The Omega network has

O(Nlog2N) components, not O(N2). The particular network which

appears to best satisfy the Connection Network requirements is a

duplex Omega network, providing redundancy for additional relia-

bility, as well as providing the required function.

The appendix is arranged in the following sequence. First, some

background information and definitions are presented. Second. the

advantages and disadvantages of providing a CN that satisfies the

requirements of being functionally "almost" a crossbar switch are

presented, especially as compared to the original TN (1,2).

Third, various candidate versions of the connection network are

described in detail, including estimates of relative hardware

complexity of each. Fourth, Simulation results on these candi-

dates are presented, obtained by a functional simulator of the CN

and by a second program called the stochastic analyzer. Fifth,

further discussion of the simulation results in used to narrow

down the selection of C_ to one or two of the cases simulated and

analyzed. Following that, there is a discussion of other CN-relat-

ed topics, including some of the design details that were disclos-

ed by th_ simulation results, and finally, a paragraph of conclu-

sions. The conclusion reached is that sufficient study has been

completed to give confidence in the feasibility of the Connection

Network in the FMP architecture, but that cost/performance trade-

offs deserve to be further considered.

Discussion of the simulators and analyzers has been relegated to

Appendix H.

B.2 BACKGROUND

The connection network can be visualized as a circuit-switched

dial-up network in which up to 512 callers (the processors) are

placing short calls to the 521 callees (the EM modules). Connec-

tions are to be made in tens of nanoseconds, and held £or a few

hundred nanoseconds. Except for the time scale, the action is

B-I
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like that of the telephone network, and hence, the design of such
a network starts with work done at Bell labs (3). The work of

Duncan Lawrie (4) is especially applicable.

Many slmilar networks have been developed, but which have been
shown to be topologically equivalent to each other (5,9)* One

name, the "Omega" network has been chosen as the term to use for

any of this class of networks. The Omega network is shown in a
form called the "baseline" network in (9).

In the FMP architecture being evaluated, each processor computes
its own address in EM. There is no central location where the

switching pattern for the entire network is defined. All patterns
of connection are possible. Since connections must be made in

tens of nanoseconds, there is no time to take a global look at the

entire pattern, and generate a set of control bits for the
network. Hence, control of the various portions of the network

must be local to those portions.

Several different networks have been investigated, and feasi-

bility of the FMP can be achieved with several of them. The

underlying Omega network design, on which the preferred versions

are based, has 1024 ports on the processor side, 1024 ports on the
EM module side, and ten levels of nodes in between. There are

1024 data paths connecting one level to the next. Each level

consists of 512 two-by-two switches, which are described in more

detail below. The connections between nodes exhibit a pattern of
connections designed to permit .s many processors as possible to

access EM modules simultaneously in parallel for the patterns of

accessing which occur in the aero flow and weather codes.

The previously described transposition network (i, 2), was

centrally controlled, and required two ten-bit control settings,
one of which was the skip-distance of a p-ordered vector (defined

below). The transposition network consisted of two barrel

switches, one 521 wide, one 520 wide. and some appropriate wiring.
Since a barrel switch that is wider than 512 but not more than

1024 wide, can be built of five levels of one-by-four switches,

the TN also had ten levels of logic. All transfers through the TN

must be synchronized to the control settings, and only those

processors whose requests fit the constant skip-distance, constant

offset description could execute during the duration of a

particular control setting.

_-Names include: "baseline network" (5), "binary n-cube",

"butterfly" , "flip network", "Omega network", "reverse baseline",

"simplified data manipulator", "hypertorus", and "SW banyan
ne twor k".
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B.2.1 Definitions

Ce_:tain definitions a_:e necessa1:y in order to under:stand the rest

of this appendix. They are.

B.2.1.1 P-Ordered Vector:

%

A p-ordered vector is a set of EM addresses such that the address

being accessed by the ith p_:ocessor is in EM module number (d +
p'i) modulo 521 where d is called the "offset" and "p" is the

"skip distance".

B.2.1.2 P-Q-Ordered Vector

A p-q-ordered vector is a set of EM addresses such that the EM

module numbe_ being accessed by the ith processor: is (s + p*i + q*

_i/k_ ) modulo 521 where k is the "length of each piece", s and p

are "offset" and "skip distance" as above, and q is the "distance

between pieces". The bottom brackets represent the "largest
intege_ not greate_ than".

Fo]: a system where there are 16 processo,:s and 17 EM modules, an
example of a p-o_dered vector would be fo, the 16 p_:ocesso_s to

request access to the following memory modules _:espectively:

i0 13 16, 2, 5, 8, ii, 14, 0, 3, 6, 9, 12 15, l, 4

where the offset is I0, and the skip distance is 3. Fo, this same

system, a p-q-orde, ed vector with p equal to i. and five elements

pe, piece, the processoJ:s might be requesting from the following

EM modules respectively:

ii, 12, 13, 14, 15, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 1

In this case, p is i, q is 4. and the length of the piece is 5.
Numbers a_e interpreted modulo 17.

B. 2.1.3 Random Request

A set of EM addresses such that the EM module being accessed by

the ith processor is a random variable, f,;om 0 through 520, which

is independent of the module numbe,; being accessed by any other

processor.

B.2.1.4 Blockage

Blockage is the result when two requests try to share the same

path in the connection network, which can then only supply a path
for one of them.
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B.2.1.5 Conflict

Conflict is more than one processor accessing the same EM module

simulaneously.

B.2.1.6 Pileup

Pileup is the number of processor having a conflict at a given EM
module.

B.2.1.7 Frame

A frame is a parcel of data of fixed size sent over a transmission

path. In the CN, each frame is Ii bits; five successive frames
make a data word.

B.3 ADVANTAGES

The advantages of the CN over the previously studied Transposition
Network (TN) (i, 2) are simplification of use) programming, simpli-

fication of the compile):, improved performance, and br oade,

spectrum of applications.

Compile) simplification arises because each processo) computes EM

addresses independently of the other processors. The compiler

need not be aware of the relationships between those add) esses.

No code is emitted to compute offsets, or akip distnaces, or to
control how many LOADEM instructions are issued. No rest)ictions

need be imposed on subscript expressions. All of these _epresent

simplications of the situation for an FMP using the pleviously

studied TN, where the compiler would have had to create an
alte_'nate branch with dummy LOADEM instructions to keep synchroni-

zation, even when a given processo): will skip all actual compu-

tation Ln a section of code containing EM accesses. The connec-

tion network (CN) does not require any synchronization, and thus
eliminates all dummy LOADEM instructions.

When the various instances of the DOALL fetch a set of array

elements that do not form a set of linearly spaced elements, no

user precautions and no analysis by the compiler are required.
Examples of nonlinearly spaced elements are the wraparound on

longitude in the GISS weather, and the offsetting of the index J
in subroutine CHRVAL of the 2D MacCormack aero flow code. In the

baseline system these would not have been allowed. The user would

have had to vector ize them. The independent programming of the

processor can make the FMP more than merely a vector machine, so

this testrictJon, imposed by the TN, represented an iuc_)mpata-
bility with the system objectives.

When the Connection Network is used, system performance would be

affected much less by problem size than when the TN is used. l.'o_
example, consider the fetching of data subscribed with the domain.

variaSles in two-dimensional DOALLs. Say the subscripts are I, ,T

and K. Within the DOALL over I and J, fetches of an array
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A(I,J,K) from p-ordered vectors with p equal I. Within the DOALL
over J, and K, fetches of A(I,J,K) form p-ordered vectors with p

equal to IMAX. Within the DOALL over I and K, fetches of A(I,J,K)

form p-q-o_dered vectors with p equal 1 and q equal to IMAX*(JMAX
- i). With the TN, all p-ordered vectors are fetched in one

LOADEM, but a fetch of a p-q-ordered vector required that each

piece of a p-q-ordered vector be fetched with a separate LOADEM

operation, o;' 512/IMAX fetch operations just to load one datum pet

p) ocessor. With the new CN, the number of EM cycles )'equiled for

a p-q-o);de,'ed vector is co,%trolled by the la):gest pileup, usually
a much smaller number than the number of LOADEM instructions

needed with the TN. The pileup for p-q-ordered vecto) s is discus-
sed further in Section B.7.4, together with some simulation

results.

For the specific example that comes from the 3D explicit code

given us by NASA, in the smaller than normal mesh size of 31 x 31
x 31, the improvement is d)amatic, from 17 LOADEM instructions

)equi)ed to fetch A(I,J,K) over I and K, to a maximum pileup of

depth 2. Simu]ation of this case showed that all p_ocessors re-
ceived their data within two EM cylces.

The following development shows thls advantage of CN ovo, TN, in

analytic form. The slowest processor is the one holding up the

synchronization at the end of a DOALL. If access [imc_" were

normally distributed with mean Tar and standard deviatio; :_, then
the wo) st total of N access times, out of 512 such total-, (_ ..

t!_(:f,..st-delayed U, ocesso)) would have a value given in

Equation B.!.

Max Delay = _-Tav+ 3"N½"S (B.I)

i_cause of the cent)a] limit theorem, this formula is valid fol

la)ge enough N without any need fo* assuming an unde) lying normal
distribution. Equation B.2 gives the cor_;esponding formula for

the old TN.

Max Delay = N Tma x (B.2)

Tma × is the time for however many LOADEM instructions are _e-

qui) ed per fetch and may be many tinles Tav. The ,eason fo, the
improvement of equation B.I ovel B.2 is that synchronization among

processoJs for EM accessing is not _equi) ed with the CN, so that

each p)'ocessor continues executing without any wait fo)" the

slowest processor.

A possible wait would exist only at the end of a DOALL where data

precedence may force a synchronization. N in equations B.I and
B.2 is the number of accesses between such waits.
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A substantial gain in use) conveniencewould be achieved with the
CN. All tricks such as adding dummy instances to the DOALL to

make the domain size equal to the a):):ay extents ate unnecessary.
There aJe no "magic" a) ray extents o__ DOALL domain sizes fo3

making the third direction have the same speed as the other two
with the CN. Likewise, all need to distort the algotithm to

regulat:ize the subscript exp) essions would disappea). The code

shown in Figure B.L is an FMP FORTRAN version of some statements
abstracted f_:om subroutine CHRVAL in a 2D explicit code given to

Bur) oughs du):ing the p_evious study. The subscript "J + OI.'FSET",

being the _esult of data dependent computations, would |,ave been

disallowed in the o_iginally pt:oposed FMP FORTRAN (i, 2) because
of the _est3, ictions imposed by the TN. Such a subscript is per-

fectly p_oper in the currently desc, ibed FMP FORTRAN. The many

awkward and a) bit):ary )est_ictions on the language, imposed by the

access pattern limitations of the old TN, a)e not _:equi_ed in a
system using the p_:oposed Connection Netwo) k. Any intege_ exples-

sion can be used as a subsc)ipt.

B.4 CN DESCRIPTION

The Connection Network (CN) has two modes of ope) ation. First,

when the processors aJe independently operating, it would p):ovide

a path from any given p) ocessot: to the EM module of that i?voces-

so,'s choice, without regard to any othe, (up to 511) connections
from other processors to other EM modules. Second, ce, tain func-

tions would be perfo, med in synch):onism, because these functions
a,:e much more economical to implement when the p) ocessots a*e

synchronized. This second class of functions would be done under
coo_dinato_ command, at a time when all p,:ocesso*:s ate in synch) on-

ism. This second class includes

* Broadcast from coo_:dinator to pt:ocesso_s
* "Ha) vest" data f) om p) ocessors to coo_dinato)

* Broadcast f,:om one EM module to all processors

(FETCHEM)
* Swap data between pairs of p_ocesso) s

Various CN design options are based on eithe_ a Benes oI Omega
network. The Benes can make any pe,:mutation of connections be-

tween p_ocessors on one side and EM modules on the othe,, but only

at the cost of having each connection a function of the connectiv-

ity of all othe) s. Opfetman and Tsao-Wu (6) show that the
computation of this "perfect" connection takes on the o) de, of N 2

computational steps (orr N log2(N) if a content add_essible memory
is used). Thus, for making connections in nanoseconds, it is not

possible to compute the control settings of a Benes netwotk for
each set of new EM addresses. Instead, each node of th ,_ netwo) k

determines its own setting, based on some rely simple computation,
with sufficient _edundancy that a path fo_ sufficiently many of

the p_ocessors is set up in the desired access time, with landom
d_stt ibtuion of the excess time among all p|ocesso) s.
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Figure B.I

DOALL,J=I,JM; K=I,KM
... statements ..
IF (condition) GOTOi0
OFFSET= OFFSET+ 1
... statements ...
IF (DYX(J,K)LT 0) OFFSET= OFFSET- 1
IF (J + OFFSET.GT. I) GOTO1
... st tements ...

... statements ...

DYX(J + OFFSET,K) = expression
ENDDO

FMP FORTRAN of Portions of Subroutine CHRVAL

of 2D Explicit Code
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Out of several candidate designs, simulations have been used to
indicate the most efficient, i.e., fastest access time, lowest

occurrence of blocking, and smallest parts count.

Figure B.2 shows the first variation considered. In this case, a

1024-wide Benes network (only some of the edge nodes are shown)

has the first 512 ports on the left attached to the 512
processors, and the fi;st 521 ports on the right attached to the

521 EM modules. Detailed examination shows many of the nodes can
never be used. The middle level must have a full 512 nodes to

switch Juts 1024 data paths (at two paths p_.r node). In the

remaining nine levels not all the data paths can reach any EM

module, so that only some of the data paths need be implemented.
Pa_ts counts can be derived from Table B.I which gives the numbe_

of path3 _equired at each level of nodes:

TABLE B.I

Width vs. Layer Number

Layer No. Number of paths (=2 x nodes)

i0 1024

ii i024

12 768
13 640

14 576
15 544

16 528

17 528
18 524

19 522

t
On the side with processor ports, the 512 processors can all fit

into a 256 node, 512-wide path, with the result that of the 1024

paths to the middle, half are unused. Figure B.3 shows a smaller

example with 8 processors and ii EM modules.

Each node is a 2 x 2 crossbar switch and is described in detail in

Section B.4.2. When paths from individual processors to

individual EM modules are set up (the "normal" mode of operation),
each node connects in either one of two ways:

i. PJocessor-side port A to EM-side po, t X, also

B to Y (straight-through).

2. Processor-side po*t A to EM-side po_ t Y, also
B to X (c_ossed).

B- 9
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As long as mode of ope,:ation is "nol:mal", only one bit of in-

fo,:mation is requiled to determine the setting of a node. When

only one pl:ocesso1'-side po1:t has a pending 1:equest, that po1:t

p, ovides the bit of control information. When both po, ts have
pending l equests, one polt must be chosen to plovide the bit of

cont):ol info)_mation. That port is said to have "plio_ity" ove_
the othe, one.

Each node determines its setting flora this bit as follows. If the

bit is ONE, the po_t with the _equest is connected to the lowel

EM-side po*t; if the bit is ZERO, the input point with the ;equest

is connected through to the uppe, EM-side po,:t. The cont3ol bit

is one of the bits of the po,:t numbel on the EM side. The middle

level of nodes uses the most significant bit of output po1:t
numbe_, the two levels on e_the; side of the middle use the next

to most significant bit, and so on to the fi, st and last node

levels which use the least significant bit.

B.4.1 Velsions of Netwo, ks Consideled

Sevelal va, iations on this idea have been devised and simulated.

Figut'e B.4 is a ,evised ve, sion of Figure B.2, showing the enti, e
netwo, k. but eliminating the detailed depiction of each individual

4node. It is, as has been p1:eviously noted, isomo_:phic to a
base-2 Benes netwolk with some of the nodes omitted. P_ocesso,

po,:ts, and EM ports, a_e each packed into the fil:st 512 netwolk

po1:ts on both sides.

Figu3:e B.5 shows the processors spread across every othe, po, t at

the left side of a 1024-wide netwo,:k. The additional nodes hope-
fully plovide some redundancy in the connectivity.

Figure B.6 shows both p_ocessol:s and EM modules spread ac_os_ a

1024-wide Benes. To simulate the sp_:eading of EM modules, t_ans-

form module number M into a new module numbe, M' as in equation
B.3.

M' = 2M 0_< M_< 511

M' = 2(M-512)+I 512_M_ 520

These exp,zessions result when M is shifted left end-around one bit

position.

Figu_:e B.7 shows the same number of nodes as in Figure B.6

a_,:anged as two second-halves of the Benes network. Duncan Law, ie

calls such a second half an "Omega netwo_ k" [4]. The idea is that

if an access is not g,anted thlough the uppe_ Omega, the p_ocesso_
could t_y a few nanoseconds late, through the bottom Omega.

B-If
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B.4.2

Figu_:e B.8 shows the basic node of any ve,'sion. Two bidi_:ectional
12-bit-wide paths connect to each side. On the p):ocesso,: side

they a_'e labelled A and B, and the EM side X and Y. Inte, nal

connections may be made fr:om A to eithe;: X or Y, and f_'om B to
eitheJ: X or Y. The 12 bits from processor to EM are used for: EM

module number +i bit plus "strobe" when t_ansfe, s are going on.

The twelve bits ,etur:ning to the p):ocesso_' a_'e Ii bits of data

plus a "latchup" bit. The "latchup" bit is a command to the node
to keel.) this path connected. The "latchup" bit would be tr:ans-

mitred f_'om the EM module upon )'ecognizing a valid ,'equest coming

from the CN, and se_:ves to keep the path connected as long as

"latchup" is true.

Logic in the CN buffer of the processor: uses latchup as the

"acknowledge" that signals that a request has been granted.

Latchup could be dr:opped by the BM module after the operation

being performed ceases to need the data path. Alternatively,
timing could occur • in the CN buffe,:, and the dropping of strobe

could be the signal to the EM to drop latchup.

The ,:esting state is shown in Figure B.9. "Requests", consisting

of EM module numbers, may or: may not be coming out of the

p_:ocessor's, and the connectivity of the node is set up according

to the specified function of module number bit and por't bit (A vs.

B). The "latchup" bit coming back fr:om the EM modules is false.

Connectivity is switched as fast as the _'equests change, since the
initial path connection is pure combinational logic. The command
lines from the CU have a "null" command.

At some time one of the l:equests finds its way to the cor r'ect EM

module, which then emits a "latchup" pulse. Other pr'ocessoJ's must

not disrupt the chosen path before it is latched. Therefore,
there Js a "CN clock" in all processors, with a pe_:iod longe_: than

the round-trip time of the CN, so that new requests ale emitted

only after old requests have had a chance to latch up. The round
trip delay is about 40 feet of wire, plus 19 gates worth of logic

delay going out and 19 gates worth of logic delay coming back. If
gate delays are 1.5 ns (including some allowance for wiJing on
(the boards), and wire is 1.6 ns/ft (Teflon or polyester • belts),

this delay is 120 ns and sets a lower limit to the CN clock
period. This clock is a second timing signal to each p ocessor

(the first is the main clock), not a countdown of the cloci< within

the processor. This timing signal selects every Nth pul_;, of the
main clock.

Figure B.10, B.II and B.12 show va_:ious latched-up states. Figure

B.II shows the "straight-through" connection, Figure B.12 shows
the "crossed" connection.
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B.4.3 CN Function Controls

The Connection Network serves othe_ interconnection functions in

the p_ oposed system besides the processor-EM paths. Other
functions are controlled f_om the coordinator. A list of CN

states defined by the coo_:d inator 's control is the fol lowing

paragraphs.

B.4.3.1 "BDCST/HVST"

The "BDCST/HVST" command makes a connection from both A and B to

both X and Y. Data from the CR enters all nodes at Y, and by

fanning out to both A and B, will _:each all processors. Data from
the p, ocesso_s enters at both A and B, and is either ORed o|_ ANDed

(it does not matte," which) to be combined at the Y-port that the
coo, dinato;: listens to. This command is used for FETCHEM as

described below, and for HVST.

B.4.3.2 "Null"

With the coo, dinator (CR) node command turned off, the node

ca, ries out its wi)ed-ln function of passing on requests, and

latching up for the "latchup" signal from the EM module as

previously described.

B. 4.3.3 "Wr apar ound"

Connect port A to po_t B. fhis implements the SHIFCN function in
this CN. When the Nth level has a wrapa_:ound command, then evely

processor is connected to the processor whose CN port numbe, is
different in the Nth bit. N is counted from the left in both

Figure B.4, and Jn Figure B.7. The "wraparound" command is used

for processor-to-p_ocessor data swapping. Depending on in which
of the ten levels of the CN is the node getting the "wraparound"

command, data will be swapped between two CN ports which differ

on]v in one bit of their numbe,:. Normally, all nodes of the same

level get the wraparound command, with the result that all CN
[)otts swap data with those ports that differ by just one bit in

the specif _ed bit position. SUMALL for example, can be

implemented by swapping data that is just one apart on port number

("wraparound" on the least significant bit) and adding, then by

swapping that sum two apart and adding four: apart, and so on up to

256 apa, t.

B.4.'J.4 Diagnostic Comma**ds

As described in Chapter 6, Section 6.1, the individual Omega

networks (layers) of the two-Omega network must be tested

separately for diagnostic purposes. Thus, we need a command to
disable one _nega De,work while testing the other one. See

Sectfon 6.1 for additional details.

_j
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B. 4.3.5 FETCH EM

The FETCHEM instEuction is implemented in two steps. First, the

EM module number is sent from the coordinator as a normal request

after the processors are synchronized (in order to ensure that

processors are not making requests of their own). This request is

accompanied by a command code to the EM module that causes reading

without sending any latchup.

During the access time of the EM module, the coordinator turns the

etnire CN on with the "BDCST/HVST" co,Tmland. Data from the

selected EM module is therefore broadcast to all processors.

Inactive EM modules emit zeroes to be ORed with the data (or ONEs

to be ANDed with the data, depending on how the nodes are

implemented).

B.4.3.6 HVST

The HVST instruction is implemented _ the coordinator settLng the

C_ to the "BDCST/HVST" state, at a time when the CN buffers are

"full" and the processors otherwise idle, and then issuing "go",

which is thL_ command being expected by the CN buffer for dumping

the data into the CN. The data arrives at all EM-side _] ports,

inciudil_g the port that delivers the data to the coordinator.

HVST is intended to be used primarily for the case that only one

process<,r is enabled, therefore, it does not matter whether that

data is ORed with zeros, or ANDed with ones, in the CN. %'he

result is that it shall be left as logic designer's option whether

the words combined during "BDCST/HVST" are ORred or _Ded.

B.4._.7 Coordinatur Access to EM

CR fetches and stores from EM are no different from _>rocessor

LOADEMs and STOREMs. The CR has its own CN buffer.

B.4.3.8 CN to Coordinator Status

Each node emits "busy" = 1 whenever one of its two paths _s

latched up. The condition that no node be "busy" is necessary

before the CN can switch to some other command. Now it ma_ De

possible for the CR to tell, from the state of synch of the array,

when the CN is idle, so there may be no need for the "busy" bit.

Until the rest of the design is finalized, however, a "busy" bit

is assuI_ed.

B.4.4 Implementation Details

B.4.4.1 Flip Flops

Two alter_lative design approaches for the node are:

4;'_ i. No flipflops, just logic that is latched up l y the

=_i_i_ "latchup" signal, as described above.

i
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2. Path-holding flipflops that are clocked by the same ]20 ns

CN clock that zc. seen as needed for timing the processor requests.

These flipfl(p_ hold the path for just one CN cloe': period.

Approach 2 _: u mo_e gates, but pe3:mits faster access to extended

memory. Fzgu_e B.13 shows the timing diagram for the two cases.

In case i, whele the node is combinational logic only, the EM
module nur,ber contained in the "request" must be held statically

by the p3 9ce_sor until the "latchup" signal returns from the EM
module. Tnen¢ and only then, would the processor be free to emit

an address to,._Id the EM module over the now latched-up path.

In approach 2, the processor emits the request followed by two

frames of address plus operation code. Each frame is ii bits. The
node, seeing one, or two, requests on ports A and B, sets the

flipflops wi_h :he CN clock, so that the address can continue down

the path, if it is possible to reach the EM module for this node.
The EM modul_ gets its address about 80 ns soone_ than it does in

approach i, cutting 80 ns off the access time. These flipflops

will not s_a_, up without the "latchup" signal coming back before
the ._ext clock, thus, if the EM module is not reached, a new path

is ",ee to be set up on the next CN clock.

B.:_4. ' W., _ng

EaCh r)'_d_ is controlled by one and only one bit of the EM module

nu.,_ber in the request of the port with priority. Since all nodes

a)'e to r.e physically identical, the control bit must show up at

the s_me [_hysical location in each node. Thus, previous nodes

must have a wi)'ing pattern for the bits it passes along, such that
they show up in the control bit position after passing th)ough the

correct number of nodes. Figure B.14 shows such a wiring pattern

fot: a 32-wi,Se CN, such as might be appropriate for 16 p) ocessors
and i7 memories. Figure B.15 shows the first few levels of the

512/52l network, showing the connections from X or Y output from

one level to the A o) B inputs of the next. Since the interlevel
cables are belts, where wires must lie parallel, and since all

nodes are _o be identical, these crossovers occu)" on the

paddleboards, not in the belts or within the nodes. (Similar

offset-by-one wiring patterns are seen on some of the Illiac IV

paddleboar6 s. )

B.4.4.3 'Logic

Each node cTntains two 12-wide two-way selector gates, one for

each 9f X and Y outputs, and two 12-wide three-way selectoJ gates,

one tot each of A and B. The third input would take care of

wraparound. Each node also contains some decision making logic.

The inputs to the decision making logic are:
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* 1 bit of the EM module number (for every node, this is the

least significant bit of the frame seen at %hat node

because of the wiring patterns of Figure B.12)

1 bit to control priority

* 1 bit, the llth bit of the "request" frame could be used

for calling for processor-to-processor wraparound

3 bits, commend from coordinator

1 "Latchup" bit

* 1 "strobe" bit, bit 12 of the processor-to-EM path

(i CN clock, if design 2, with flipflops, is used)

Asterisked items occur on both ports (either A and B, or X and Y),

leading to a total count of 12 signals that have to be combined in

the combinatorial logic. The logic has the following output

signals: Select A or B or both or no-output for X, select A or B

or both or no-output for Y, select X or Y or B for A, select X or

Y or A l[or B, "busy". Only 16 logically different output signals

are needed. "No output", or all lines FALSE, is substituted for

an input request that cannot reach its destination.

Feierbac,_ and Stevenson [5] recommend the following algorithm for

determining priority: If the request at A and the request at B

can both be satisfied, then the node is set to either straight-

through or crossed connection, whichever is requested; if the

requests conflict, the node is set to straight-through, which will

be correct for one of the requests. Thus, A has priority if its

request bit is zero; B has priority if its request bit is one.

This algorithm introduces no bias against either A or B, but means

that certain memory modules will be more easily accessible from A,

and other memory modules will be more easily accessible from B.

If memory addressing averages out in some sense, then this

algorithm is unbiassed.

The priority rule used successfully in validating the CN goes

thusly, for the double Omega. In the upper Omega network, the

upper port of each node has priority; in the lower Omega network,

the lower port of each node has priority. Early simutation

results showed p£iority could not be left to chance, and all

double Omega simulation results reported in the next Section, B.5,

were done with the priority according to this rule. For the

single Omega network, the priortiy was alternated each CN clock

period, and there were an odd number of clock periods l_er EM

cycle. This is slightly more complicated than Feierbach and

Stevenson's rule, but was judged to be less biassed.
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B.4.4.4 Parts Count

The node's parts count, or at least the gate count, is dominated

by the selection gates, tht'ee-input selection gates for p_:ocessor

directed signals going back out of parts A and B, and two-input

selection gates for EM-bound signals out of ports X and Y Using

the Benes network with processor: ports packed into the fit;st 512

prossor-side po, ts and with EM ports packed in the first 521 as
an example, the parts count goes as follows. The fiJst nine

levels have 512 nodes each. For the last ten levels, we can count

the number of nodes pe_: level from the data in Table B.I. The

number of nodes is just half of the number of paths passing

through a given level. Adding together the 19 numbers represent-

ing the number of nodes at each level, gives a total of 5643
nodes. At each node, thet;e are two ports, and a data path that is

12-wide, with 3-input gates in one direction and 2-input gates in
the other. Computation gives

5643 x 12 x 2 = 135,432 3-way 1-input selection gates, plus
135,432 2-way 1-input selection gates, foil a

total of 270,864 selection gates

By comparison, the Transposition Network in the preliminaJy study
[i, 2] consists of two ba,:lel switches, each bidirectional and 9

bits wide in both directions. If these barrels were to be imple-

mented with 2-way 1-input selection gates, they would have

(520 + 521) x 9 wide x I0 levels x 2 di,'ections = 187 380

2-way 1-input selection gates

Parts count of the other va, iations differ accordingly.

If the same level of integration can be achieved in both designs,

then the Benes netwoJk of Figure B.2 should take more chips than

the TN by about the ratio of the number of inputs in these

selection gates, or

135, 336 x 2 + 135, 336 x 3

187, 380 x 2
= 180.6%

To such a node count must be added some additional inc3ease

because of the combinatorial logic in each node, some addition-

al increase because of the additional processor interface requir-

ed, and if the two-layer Omega network of Figure B.7 is used some
additional inc) ease in the EM module to resolve conflicting

accesses arriving from the two redundant networks. On the other
hand, the network controls, simple enough in the baseline design,

are even simpler here since most control is local to the node.
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Some of the increase in size is due to the increase in width, from

9 lines in the baseline design to 12 lines hel/e. This increase is
necessa)_y since the EM module numbeJ: plus a st[obe must be trans-

mitted in pa)allel. However, this also would give some speed ad-

vantage; a data word being transmitted in 5 frames instead of 7

bytes.

If only one Omega network, one sheet of Figure B.7 is implemented,

then some means of eliminating the bias against certain p_ocessors

must be adopted. Alte_nating the p3;iority on a regular cycle has

been simulated, and appears to be satisfactory. The suggestions
of Feierbach and Stevenson (5) when adapted to this network appear

to eliminate bias more economically, but perhaps with side

effects; they have not been simulated.

Another variation on the two sheet layer" Omega network would be to

provide, at each node, a path for data to go up or down to the cor-
responding node of the other sheet. To the node logic of Figure
B.8, a path would be added from port B of the other; node, entering

into output gates X and Y, as well as a path from both X and Y of

the other node, entering the outputs at port B. Po, t B is selec-

ted on the basis that it is the low priority port; the high prior-

ity port will always find a path on its own sheet. With a two-

sheet Omega, one p)obably uses fixed p_io2:ities, favoring the A

port on one sheet, and the B port on the other sheet. However,
the hardware on both sheets can be identical because of symmetry.

This variation increases the number of inputs of selection gates

from ten to 14. Since data paths dominate the hardware, this is

approximately a 40% inc,_ease in gate count for the entire CN to

provide these additional paths.

B.5 SIMULATION RESULTS

B. 5. i Summary

Various CN configurations were simulated with the functional simu-
lator and the simulato) ,esults were studied for various indica-

tors of goodness of function. Test cases consisted of filling a

queue of requests in each processor. In some tests all processors

had requests in a given queue position, so that all 512 processors

made requests. The requests in the 512 processor" could form p-
ordered vectors, o_ could be p-q-ordered, or could be random. The

easiest cJ:iterion for performance evaluation is the percentage of

the 512 requests that are granted on the first EM cycle. Section

B.5.3 and B.7.4 go into more detail on the performance after that
first cycle or when only a portion of the processors are *equest-

ing access.

Table B.2 shows, for a number of possible CN designs, this perfor-

mance on the first cycle, and also lists the gate count by number

of nodes and as a pe,_centage of the gate count of the TN [i, 2].
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B

Y
The four variations of networks with the best combination of non-

blocking and pa, ts count were

Case i. A two layer Omega Network (Figure B.7) with 361% times as
much hardware as the transposition network.

Case 2. A Benes Network with processors spread (Figure B.5)
with 254% as much hardware as the Transposition Network.

Case 3. One sheet of Omega network with 164% as much hardware
as the TN.

Case 4. A two layer Omega netwol:k but with sheet-to-sheet paths
at each node. This Js estimated to take about 485% of
the hardware of the baseline TN.

i_

i_i̧

_=_ ,

?,...
./J

J

1

Table B.2 also includes results obtained with the stnchastic

analyzer, which computes the probability of blockage within the CN
under the assumption that the input is a random ,equest. Since

the functional simulator could not handle case 4, the stochastic

analyzer results are all that is available for this case. In the
case whe_'e the functional simulator and the stochastic analyzer

were both used, it is seen that the stochastic analyze, agrees

with the simulator results for the case of random requests. For

case 4, the, e are two outputs from the CN to the same EM module.
The stochastic analyze," does not count the two conflicting

requests a,:_iving at these two ports for the same EM module as a

blockage.

The data of Table B.2 is plotted in Figure 8.16, where it shows

the tradeoff between speed vs. amount of hardware, for the CN.

Speed is represented indirectly, as percent success for the case

of all processors requesting simultaneously; hardwa_[e is also

represented indirectly, as a gate count, which in actuality can be

only a rough guide for hardware cost. Three of the fou, cases
previously listed show on this figure as local optima. All net-

works investigated have the 2roperty that a p-ordered vector with

a skip distance of 1 found all 512 paths simultaneously on the

first request.

B. 5.2 Data

The individual simulation averages in Table B.2 are repo_ted in
more detail in Table B.3. The simulator generated either a

p-ordered vector for the 512 requests, or generated 512 random
numbers. Requests could be queued in the processo_'s. In early

runs, Case I, the two-sheet Omega network was simulated by com-

bining two successive cycles of requests of a simulation of case

3, the one-sheet Omega. When the original set of requests is a

permutation containing no duplicate EM module numbers, this is
correct for all cycles. However, when the original set of

requests is random, corrections for multiple accesses to the same

EM module must be made and only the first cycle is co_:rectly

simulated fol: these early results.
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!

]

Nc !.wo,'k

Baseline TN

Benes, Proc.

ports packed,

EM ports un-

packed

(Fig. B.4)

Benes, Proc

ports unpacked

EM ports pack-

ed (Fig. B.5)

Benes, all un-

packed

(Fig. B.6)

Double Omega,

all ports un-

packed

(Fig. B.7)

Table B.3 Summary of Individual Simulation Runs

Ipart c I Type o_ Offset,skip Number of

¢-'(_Ull t ] _ ,_,2(2 t_¢._

3120

equlv.

{!00%_

5643

(180%)

7947

(254%)

9728

(312%)

11264

(361%)

random

131 _ 43! i

123

random

SUCCeSSeS

Ist cycle

5]2

1

5.2

268

]99

136

181

248

average. 40.6%

175

]74

172

170

163

168

173

177

average.

|

Percent Hu_;,L_[ of [
of 512 cycles for]

requests all _12 ]

.IL_2.'.,, 512

[ioo':, 1
j52.4_, 4

38.9L 4

27.6_ 5
35.4_ 4

148.5% 4

p-ordered

random

p-ordered I 246 I 179

random

34.2%

34.0%

33.6%

33.2%

31.8%

32.8%

33.8%

34.6%

.33.5%

p-ordered

random

p-q-ordered _!

with p=l

length of

piece ....

325 63.5%

241 47.0%

average._50j2%
213 41.6%

228 144.5%

._t erage.  .Ot
215 142%

176 34.4% -

I 24_ 1179l 44_ 186.6: ._
/ 17 ! 17/ 333 164.9% 3
/ 0 l 228/ 372 ! 72.7%

308 160.2%
287 159.0%

average.. 59.6%
................ -7 ....................

31 438 J 85.6 _2, -

31 465 90.97_ I 2
3] 443 86.6". -

I00 508 I 99.3% 2
M

100 460 [ 89.9 °, 2

average.. 90.5% J
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The stochastic analyzer data is summarized in Table B.4. The
output of the stochastic analyzer produced detailed description of
the blockage of the network at each level, giving a probability of

a requests blocked at each level. Only the totals are shown here.

In addition, the number of processors making a request was varied

from 256 (50% of the processors) to 512 (100% of the processors).

The body of the table gives the probability of a request being

blocked within the CN, and hence the fraction of requests that are

expected to be blocked.

In the case of the single Omega, any EM module conflict will

result in blockage within the CN. For the double Omega up to two

requests for the same EM module may show up at the output port.

The stochastic analyzer does not count this as blockage.

In addition to the actual 512-processor/521-EM module case, the

st_.chastic analyzer was run for curiosity on a number of other

sizes of arrays, to investigate sensitivity to the exact number of

processors and EH modules. These are also listed.

All the data o£ Table B.4 is plotted in Figure B.17.

B.5.3 Discussion of Simulation Experiments

P-ordered requusts had considerable variation in the percentage of

success, in the functional simulator, as a function of the skip

distance p. Thi_ constrasts with the behavior of random requests,

whose behavior was nearly uniform and independent of the seed for

the random number generatoz. Almost all values of p produce p-

ordered vectors whose percent of requests granted is substantially

better than for random requests.

Certain skip distances (including p = i) are "magic", in all that

EM accesses are attained on the first cycle, with no intf:rference.

Figure:_ B.18 and B.19 show the distribution of percentage success

over the various skip distances tried for two of the networks.

The experiment has a defect; skip distances were not selected at

random, but were partly picked on hunches that said they would be

"magic", with high success rate, or "perverse", with low success

rate. p = 17 was expected to be perverse and it was. p = 228 was

expected to be "magic" (228 is the reciprocal of 16 in modulo 521

arithmetic) but it was not.

In normal operation, processors are not spending full time access-

ing EM. but are spending most of their time doing other things.

Furthermore, since they are processing independently of each

other, processor requests %¢ili often get out of synch with similar

requests in other processors. Therefore, a question of interest

is to what degree does the blocking in the CN become less as the

percentage of requests is less. Two methods were used to investi-

gate this question. First, the stochastic analyzer could be run

with the probability of a request being issued from a given

processor set to various values. These results are shown in

Figure B.20. These results are for single Omega (case 3), dnd
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double Omega with interlayer data paths (case 4), plus some

non-realistic cases. The second result was by simulation with

only some portion of the processors having CN requests. Most of

the results of the second method were obtained with an early ver-

sion of the simulator which could not be initialized to fewer than

512 requests. However, the simulator did keep retrying all re-

quests that failed to be satisfied on the first EM cycle. Hence,

these leftover requests can be used to estimate the response of

the CN to the situation that only a portion of the processors are

making a request. Figures B.20, B.21 and B.22 are these data for

the double Omega (case I), the Benes (case 2), and the single

Omega networks (case 3) respectively. Data points derived from

requests leftover from p-ordered vectors are marked with X; points

representing leftover requests from originally random requests are

marked with dots; and points marked with circles are cases that

were run with partial random requests after the functional simu-

lator was improved so as to initialize the processor request

queues for an arbitrary n_nber of processors less than 512.

B.5.4 Test Cases Abstracted From the Aero Flow Codes

In two directions of accessing, the aero flow codes produce

p-ordered vectors as access requests. In the third ( "hard" )

direction, a p-q-ordered vector is produced. A full-scale im-

plicit might have dimensionality (i00, 50, 200) leading to p=l and

q=4900=211 modulo 521. The explicit code as supplied (a small-

mesh test case) has dimensionality (31, 31, 31) leading to p=l and

q = 931=410 modulo 521. Several test cases were run using the

double Omega, Case i, which by that time was targeted as the CN

most likely to be recommended, and the results are shown in Table

B.3, where they are called "p-q-ordered with p=l". The first

sheet of simulator printout, on the first CN clock, gives a

printout for the first layer which is identical with the first

clock of a single Omega_ hence, this data is also listed in Table

B.3.

B.6 SELECTION _IONG THE CN ALTERNATIVE APPROACHES

Four preferred approaches to Connection Network (CN) implemen-

tation were listed in section B.5.1. The arguments presented

below show that the double _nega network (case 1 or case 4) is

preferred. Trade-off studies between these two cases are incom-

plete. Table B.5 compares the characteristics of the four prefer-

red cases.
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In Table B.5, the "Hardware" column compares the gate count of

data carrying gates of the various versions with the corresponding

gate count of the Transposition Network considered during the

Preliminary Study [i, 2]. This comparison is used since package
count is subject to uncertainties of packaging, suitable part

availability, etc.

"Random Success" is, for sets of 512 simultaneous random EM access

requests the average percentage of that were serviced on the first
EM cycle.

"P-ordered Success" is the corresponding average percentage for

sets of 512 p-ordered requests. Substantial variation in this

percentage from one set to another was observed, although perfor-
mance was consistantly better than it was for random requests.

The percentage given does not include p=l, the simple vectors, for
which the success percentage is always 100%, as the next line
reminds us.

"P-q-ordered success" gives the percent success observed with
so-called "P-q-ordered" vectors, in which the module numbers come

from the set M i = (i*p+(iDIVk)*q)mod 521. The value of p was
always 1 in the test cases, which come from actual aero-flow
codes.

B.6.1 Discussion of Results

The data in Table B. 3 comes from a simulator which makes 512

simultaneous requests of the EM modules. In actual programs, this

is expected to happen only on the first cycle of the DOALL on the

first EM access. Once some processor has been delayed on
accessing EM memory, it will no longer be in synch with the access

requests of other processors, and so the system should be self-

regulating for all but the shortest DOALLs, with an effective
delay controlled by the average access time observed when some

fraction of all the processors are requesting access to memory.

Consider a program that averages five floating point operations

per EM access (for example, the 2D version o£ the explicit code,
according to the Preliminary Study) [i, 2]. Each EM access ties

up the CN an estimated four CN clocks of 120 ns each, if the

success rate were 100%. Five floating point operations in 512

processors will take at least 1471 ns so that the CN would have
162 requests pending on the average at any given time. Figure

B.20 shows that the percent success with case 1 the double Omega,

is nearly 100% at this level of loading. Figures B.21 and B.22

show about 80% success at 210 requests loading for case 2 the
Benes Network, and 60% success at 270 requests for case 3, the

single Omega Network. The 162 requests are 42.4% of maximum

loading for case i. 210 requests are 65% of the maximum loading

for case 2 Network and 270 requests are 75% of the maximum lo_ding
for case 3.
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Noneof the cases car_'ies a ha3_dware cost greate_ than about one

third that of the set of 516 p_:ocessors. The pa_'agraph above

shows that the simple double Omega (case I) can handle prog_:ams

with as few as five floating point operations per EM access and

still have maJ:gin to accommodate bursts of EM access. Such bursts
a_e planned; we expect a flurry of fetching from EM at the

beginning of many DOALLs and another sho1:ter burst of stores to EM

is expected at the end of many DOALLs.

The double omega Network with interlaye,: paths (case 4) is even
better than the case 1 double Omega at not blocking. Unfo_:tun-

ately, modification of the CN simulator to include case 4 would

have been a major effort, and was not done in time for this _e-

port. Hence the evaluation of this network is incomplete.

The choice between case 1 and case 4 both double Omega Networks,
must take into account a number of other factors if the choice is

to be optimized. Among these are.

* Characteristics of the applications programs. The four

benchmark prog, ams _epresent only four points in applications

space. The main characteristic of interest here is the number of
EM accesses, and their distribution in time.

* Relative cost of the two versions. The gate count is in

the ration of 1.4:1, case 4 with interlayer connections having the
more gates. If the CN chips turn out to be strictly pin- limited,

the extra gates may not cost much at all.

* Ease of diagnosing ha,:d failures. In the simple two-layer
network diagnostics are straight forward, since each single Omega

network, tested separately, is easy to diagnose, as shown in the

Chapter 6 of this report. More complex hardware controls are

needed to make the more complex version as easy to diagnose.

B.7 ADDITIONAL CONSIDERATIONS

The remainder of this appendix considers an assortment of various

behaviours of the CN and aspects of EM accessing. These include
references to or discussions of

* Modular partitioning

* Mapping of module number to CN port numbe_: and spa_ing
* Processor-to-Processor transfers

* EM module conflicts for p-q-orde_:ed vectors

* App,:oximate validity of the assumption of _andom EM

module numbers when EM accesses are queued within the

processors.
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Appendix H contains b_ief discussions of the CN simulato,: and of
the stochastic analyze_ respectively. Listings of the CN

simulator (prior to the insertion of the capability of testing

p-q-ordered requests) and of the stochastic analyzer have been
provided to NASA Ames.

Appendix I contains an analysis of the connectivity of va_:ious

networks which was performed soon afte)_ CN conside,:ations began.

B.7.1 Modular Partitioning

Note the division of an Omega network (FiguJ:e B.23 is a 16 x 16

Omega network) into distinct upper and lowe_: halves after the
first level of nodes, and into quarters after the second. It is

expected that afte_ the second level of nodes: identical qua_:te_s

can be put into each of the four EM cabinets. Thus, the CN would

not physically exist as a single central item except possibly for
the first two levels of nodes.

B.7.2 Mappin_

Mapping is desc, ibed in adequate detail in Chapter 5, and need not

take much space here. The probable mappings are as follows:

The CN ports on the processor side are numbered 0 to 1023. The

first seven bits plus the least significant bit will be called CN-

port-within-cabinet. The two intervening bits are the cabinet

number. Within the cabinet, the processors are numbered 0 through

128, including the spa_e. Processors 0 through 127 are assigned
port numbers as follows; reverse the processor number ezLd for end,

least significant bit to most significant bit position, and vice

versa, multiply this result by 2. The result at this point is

CN-port-number-within-cabinet. Processor 128 is assigned to
CN-po):t-number-within-cabinet No. i. All others have even num-

bered po,_ts.

The CN ports on the EM module side are numbered from 0 to 1023.

There are 525 EM module slots, and hence, 525 CN port numbers to

be assigned. EM module numbers 0 through 511 are assigned to the

even port numbers from 0 through 1022 respectively. The
additional 16 slot numbers are assigned four per cabinet as shown
in Equation B.6.

CN Port No. = 32 x (EM No. modulo 512) + 1 for EMno> 511. (B.6)

On the EM side, _he most significant two bits of port numbe_: are
the cabinet number.
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B-43



I

Sparing of EM modules would be accompanied by )eplacing a
_;efe1:ence to a failed EM module with a 3:efe_:ence to one of the

spa) es (numbered 521 th_,ough 524) . The ):emapping of such a
):efe)'ence would occu3; in the CN buffe_:. The remapping cal;3;ied out

in the CN buffe); would change up to fou); EM module number, s f|:om

thei) noymal CN destination port numbe); assignments to the CN

destination port number fol the spa):es. Spa)'ing of p);ocesso,;s is

done by designating one as spare, whereupon all processo) s whose

physical location numbe_:s are higher than the physical location of
the spare within the same cabinet, interpret physical location

minus one as theil p) ocessor number.

B.7.3 Processor to Processo); Transfers

SHIFCN using "w):apa_ound" in the simplest way is effective only

when processor in physical location 128 in each cabinet is desig-
nated as the spa_e. The "wrapa, ound" command, as described, makes

connection between two CN ports whose numbers diffe_ only in one

bit position. Although the positions of the bits in a CN pol:t
number a_;e different than the positions of the bits in a p_ocessor

physical location, they are the same bits, 3ear,ranged (swapped end
fo); end and shifted by one). Thus, to get bits of p_;ocesso3

number to correspond to bits of CN port numbe)', we must have the

processors in the first 128 out of the 129 physical slots.

Thus, some modification to the simple "wraparound" described in

the p;:evious sections is called for in order: to accomodate both

sparing and the SHIFCN inst) uction. The SHIFCN instruction is not

used anywhere in the aero flow or weather codes except as part of
the SU_IALL function. In SUMALL, since the use of SHIFCN is hidden

inside system software, deficiencies of SHIFCN could be avoided by

programming. However, the SWAP function will require either a

soluti()n to the SHIFCN problem exposed above, or else a store to

EM fol.'owed by a fetch from ,'ecalculated add_;esses.

B.7.4 EM Module Conflicts on p-q-o_:de, ed Vectors

Failu,:e to access all 512 memory words in pa,allel can be due just

as much to request conflicts, whe,:e seve_al processo):s a_e t) ying

to access one memo) y module, as to CN blockage. Case 3, the

single Omega has the property that all EM module conflicts a,:e

eliminated by a CN blockage that occurs somewhere within the CN.
These Blockages that ,esolve conflicts should not be blamed on a

CN inadequacy, since even a perfect CN will not eliminate the orig-
inal conflicts.

Depth of conflict, or "pileup", is defined as the number of proces-
so):s requesting the same EM module on one CN cycle. Pileup is not

to be confused with the queues of requests within the p,_ocesso_ ,

which could conceivably contain even more requests for the same EM

module, but the_e would not come to light until some later CN
clock.
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P-q-ordered vectors occur frequently in the aero flow codes (in
the "hard" direction). Whenarrays are placed in Extended Memory

with successive elements in adjacent EM modules and when the pro-

cessors are each accessing an element of a p-q-ordered vector con-
current with all the other processors, then EM conflicts of the

sort just described can occur. This situation is discussed below.

Table B. 6

Worst "p-q-ordered" cases

Array Dimensons Pileup Array Dimensions Conflict D,:pth

20 x 26 20 29 x 18 18

26 x 40 13 29 x 36 14

39 x 40 13 34 x 46 16
42 x 62 13 41 x 89 13

50 x 73 Ii 45 x 81 12

43 x 97 12 49 x 85 II
34 x 23

Since any array size declaration picked at random is not likely to

be one of the bad cases, and since the bad cases are all smaller

than the problem sizes £or which the FMP is targeted, the problem
would appear to be a minor one, of the sort most conveniently han-

dled by having the compiler issue a warning to the programme, when
one of the bad cases is seen. The depth of conflict can never be

more than the number of p-ordered pieces in a p-q-ordered vector,
since the p-ordered pieces never have conflicting access

internally.

In Table B.6, the number of conflicts may be different depending
on the order of M, N. Usually, array dimensions (M, N, X) where M

is less than N, have more conflicts than (N, M, X). In the table,
the worst of the two cases is listed.

Figure B.24 shows an example of t_e pileups that occur when an

adverse p-q-ordered vector is accessed from a smaller number oi EM
modules. For example, the number of modules and the number of

processors are both ii. The vector being fetched is M i = (3 + l*i
+ 9"(i DIV 3)) modulo ii for 0 i i0. The top portion of the

figure shows the address space in these ii modules, plotted within
the two-dimensional representation based on module number vs.

address within module. The addresses being accessed are marked

with an asterisk. The lower part of Figure B.24 shows the result-

ing pileul,s. In this case, the worst pileups are of depth three
at module n_,bers five and six.
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I£ q plus length of piece is nearly equal to 521, then the
successive pieces of vector will tend to coincide in the same EM

modules, generating substantial conflicts. When an arlay has a

dimensionality (M N, X), and the DOALL is on the first and third

ssbsct_ipt, the t:esult is a p-q-or'tiered accessing of that at t:ay

with p:l and q+K=M(N-I). All numbers that are close to multiples
of 521 which can be factored into an M and an N that ate within a

factor of two of each other were sut:veyed. The depth of conflict
in the most-accessed EM module for: each of these cases was

computed. Pileups can also occu) when MN is close to 260 modulo

521. Out of all possible pair:s of numbers M, N that lie within

the above tange, exactly fifteen pair, s generate EM module
conflicts that a_'e 10 deep or more (listed in Table B.6). The

wo;st case is M, N = 20, 26 which yields a depth of conflict of 20

in six memory modules, and which takes 26 cycles of accessing to

resolve, as shown by simulation.

B. 7.5 Non-Randomness

Given a random set of EM module numbers as a request, the, e will

be conflicts at some of the memory modules. After the fi, st cycle

of satisfying the r:equests has occurred, the memor'y module with an

N-way conflict will still have an N-way oY (N-l)-way conflict.

Hence, if thet:e is a succession of r:andom t:equests for: memory in

the processor:s, the leftover requests will tend to bunch up to
some configu_:ation that is worse than a random request. In ot_det"

to test this effect, a test case was t:un with all 512 p) ocesso_'s

each having a queue of three random ,equests. The case 1 double
Omega network, was used for simulation purposes.

Tables B.7 and B.8 trace the history of this test tht:ough the 12

EM cycles that it took to satisfy all p,:ocesso) s. For each cycle

Table B.8 gives the numbe,: of processo_:s t:equesting memory, the

number of memo, y modules over which such a request is expected to
fall (by ref. i), the smaller number: of memory modules that the

bunched-up requests actually asked for, the pet'centage the numbe_

of memory modules actually reached (any diffe,:ence between the

second and third is due to conflicts in the CN), the pe)centage of
non-blocking in the CN), and finally, the length of the longest

pileup obset'ved. Table B.7 gives the history of memory module

conflicts pet: cycle for" this test. Cycle ii included one proces-

so, that was requesting the second item in the pt:ocesso,'s queue
of three items. This lone processor:'s third item constitutes

cycle twelve.

n

!
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Cycle

TABLEB.7 Pilueup History
Numberof EMModuleswith Specific Conflict Depths
Depth Depth Depth Depth Depth Depth Depth Depth

2 3 4 5 6 7 8

1 197 90 31 4 4 1 0 0

2 182 89 26 13 3 0 1 0
3 199 76 30 8 3 4 0 0

4 165 59 19 6 4 0 1 0

5 137 36 13 7 0 1 0 0

6 99 30 I0 1 1 0 0 0
7 74 17 4 0 1 0 0 0

8 52 6 0 1 0 0 0 0
9 20 2 1 0 0 0 0 0

i0 9 1 0 0 0 0 0 0

ii 3 0 0 0 0 0 0 0
12 1 0 0 0 0 0 0 0

From Table B.8 one can see that on Cycle 1 there were 512 re-
quests, and that, if purely random, one should expect these

requests to involve 327.2 EM modules on the average. There were

327 memory modules in this first cycle, whose requests come direct-
ly from the random number generator. In subsequent cycles, there

are always slightly fewer EM modules being requested than one

should expect if the number of processors requesting were issuing

random requests. At cycle 5, there are only 194 different memory

modules in the 282 requests being issued by 282 processo) s, where-
as if those 282 requests were random, one expects 217.9 different

memory modules to be named. This is the worst bunching of re-
quests seen in the whole run.

Whethe, these results are statistically significant was not analy-

zed; they might be within the normal range of random variations.

Whether; significant or not, the indication is that the expected

bunching effect is fairly small.

B. 7.6 Red undanc)/

The double Omega, case i, network has the propery that either half

can be disconnected from the system under coordinator control.

This featu)_e is provided to increase system availability, since

the double Omega with one of its networks turned off is p) ecisely
the single Omega, case 3, and will support FMP program execution,
but at some increase in effective EM access time.

il
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B.8 CONCLUSION

The study has shown that the double Omega Network (case 1 of this

discussion) can be expected to give the required performance at

reasonable cost. Its pezformance has been validated by simulation

and analysis. Various options giving either higher performance or

lower cost have also been presented. Additional options were
considered during the course of this study, but were omitted from

this discussion in order to avoid digressions.

Although sufficient study has been completed to give confidence in

the feasibility of the Connection Network in the FMP architecture,
cost/perfo, mance t,:ade-offs deserve to be further conside_'ed.
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APPENDIX C

INSTRUCTION SET AND TIMING INFORMATION

C.I INTRODUCTION

The instruction set has undergone substantial refinement since the
instruction set of the Preliminary Study [1,2]. Additional func-

tions have been identified, including the necessity for hardware

double precision, a "read with lock" operator in Extended Memory,

additional operators for the system software, and so on. The
unsynchronized CN has required substantial changes in the

operators that access Extendcd Memory, including the addition of a

MOD 521 operator in every processor, and the elimination of the CN

controls from the coordinator for EM accessing.

One set of processor instructions is known to be necessary, namely

a set of operators to allow formatting of output, and unformatting

of input. These have yet to be specified. Insofar as the

instruction set presented here still does not have them, it is
incomplete. In evaluating the processor against the banchmark

aero flow codes and weather codes, these character-manipulating

operators are not needed, even though they will be needed in a
final design.

Table C.I is a listing of the instructions. It is divided into
three sections. Processor instructions are in the first.

Commands issued by the coordinator and effected in the processor
are the second. Coordinator instructions are the third. Since

every processor is a serial scalar processor, and can execute
scalar code on data residing in EM, no separate 513th "scalar"

processor is any longer required, nor are the "scalar unit" in-

structions of the baseline system any longer included. Hence, no
floating point instructions are listed for the CR. If floating

point requirements become identified in the system software that

executes on the CR, there will have to be floating point capabi-

lity included in the CR.

Table C.2 at the end of this appendix is a list of the timing of
the instructions. The format used is similar to that used in the

Preliminary Study [2], except that the instruction descriptions
have been moved to Table C.I.

C.2 DESCRIPTION OF TABLE C.I

The Table C.I is a description of the complete instruction set. A

buffer register interfaces the CN, and that the buffer can hold an

address and a word of data for a STOREM, or accept a word of data

from EM on a LOADEM, without interfering with, or requiring assis-

tance from, whatever instruction is in the processor. Hence,
instructions which access this buffer must be able to test whether
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it is "busy", dedicated to an uncompleted LOADEM or STOREM, and

whether or not it is "full". To a large extent, these tests on

"full" and "busy" replace the waiting for "go" in the baseline

system of the instruction set. For example, a STOREM, having told

this buffer to empty itself at the designated memory module, need
not wait for anything more to happen, but the next instruction may

start immediately.

The list has been simplified by using condensed notation. A

"(L,M)" following a mnemonic means that either L or M can be
appended to the mnemonic to create other instructions in which the

designated operand can come from memory, or is literal, instead of

register two. Likewise, instructions with almost identical
descriptions will be combined into a single description.

An "F" prefix designates a floating point operation using floating

point registers, "I" designates an integer operation using integer

registers, and "C" is the coordinator, using the integer registers
in the coordinator.

The symbol "&" designates concatenation. "Next" designates the

register next after the designated one. Names in quotes are

specific control bits. "-_" designates that the data just
described is to be inserted into the location designated just
after.

Major changes from the Preliminary Study [2] are listed in the

following paragraphs.

Most synchronizations are put onto the CN buffer so that
individual instructions are not held up waiting. "I got here" is

set by one instruction, and then usually tested at some later time

to see if "go" reset it, although WAIT and LOOP still wait for

"go". LOADEM and STOREM with the new CN are completely free of
any synchronization requirements, thanks to the CN buffer.

The instructions by which the coordinator causes diagnostics to be
imposed on the processor are more complete in this list than

previously.

The data path directly from coordinator to processor through
fanout boards, of ref. 1 and 2 has been eliminated. Instead, the

coordinator has been given access to a CN port, which can be then
set to a "broadcast" condition where it connects to all processor

parts in parallel. The control path from coordinator to proces-
sors remains.

Double-precision floating point has been included. Double-length

format is two words in single precision format, with an exponent
difference of 36, and with the second word not necessarily

normalized.

Several corrections, such as incrementing before testing in ITIX

and CTIX, also make these instructions differ from the previous

description.
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C. 3 MICROPROGRAMMAB IL ITY

Burroughs, on its own funds, has been building an evaluation model

of a processor similar to the single FMP processor (see Appendix E

of ref. i). This exercise shows that the preferred

implementation, even for a fixed instruction set, will be instruc-

tion decoding by ROM or PROM. Hence, there will be room to modify
the instruction set until fairly late in the design cycle, as long
as the new instructions use the same basic hardware resources as

the defined instructions. Thus, for example, a Newton-Raphson

square root could be included as a microprogrammed instruction,
but the square root algorithm that uses a slight modification of

the divide algorithm would involve a one or two gate change in the

arithmetic chip and could not. Double precision instructions are

microprogrammed from single-precision hardware.

C.4 COORDINATOR OPERATIONS

In all test cases extracted from aero flow or weather codes, the

coordinator has nothing to do for long stretches of time, only an

occasional SYNC instruction to enforce the data precedence
conditions at the end of the DOALL.

On the other hand, the coordinator will have system functions to

perform, such as responding to I/O-complete interrupts at the end
of DBM-EM transfers. These two functions are interlaced at the

same instruction execution station; "all processors ready" is an

interrupt that is allowed in system-function code execution, and
masked off in user code, so that system functions can be executed

during the long waits in coordinator user code.

C.5 FORMATS

This instruction set is presented to demonstrate feasibility of

the FMP. Some of the assumptions underlying this instruction set

could conceivably be changed during the actual design of the FMP.
These assumptions include addressible registers, a desire to
sometimes use absolute addresses and a data word size of 48 bits.

A data word size of 48 bits points to 48 bits and its submultiples
as preferred instruction sizes also. This instruction set assumes

24 and 48-bit instructions. Within 24 bits we get an opcode and 3

register addresses; or an opcode, tw_ register address and a

7-or-8-bit countfield; or a 4-bit opcode, a register address, and
a 16-bit literal. Within 48 bits we can get two address-sized

fields with or without index designations plus one register

address and an opcode; or one address-sized field and two or three

register addresses.

If, instead, one assumes 16, 32, and 48-bit formats, the register

instructions would largely be two-address, either Reg I op Reg 2

Reg I or Reg Iop Reg 2 Accumulator, in order to fit the common
instructions into 16 bits.
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C. 6 ADDRESS ING

The address field (18 bits) consists of either "00" + 16-bit

absolute address, "01" + 16-bit literal, "i0" + 4-bit register

identifier + 12 bits offset, or "Ii" undefined so far.

Absolute addressing is intended to be used only for system soft-
ware and for FORTRAN common. Simple variables and "descriptors"

have relative addresses with respect to the stack pointer, just

llke in B 6700, and 12 bits should be enough. "Descriptions" is

loosely used to refer to base addresses of named common areas and

base addresses of local arrays (or "IN ALL" arrays whose scope is

within the subprogram only).

In test cases, 12 bits was enough to access any element of any

local array. A base address of a local array, once fetched to a

local register, can be used for several accesses to that array.
When a single computed address is not enough then the restriction

to only one register that can be added to the offset creates some
additional integer arithmetic that has to be programmed. The test

cases show enough cases where the programming consists of a single

integer add, as to suggest that a fourth address format ought to

be "ii" followed by two four-bit integer register addresses and an
8-bit address. The saving is one of code file size only, and not

directly in execution time, since the act of adding two integers
together takes one clock whether those integers are specified in a

separate IADD instruction or specified as indices associated with

an address field. Such double indexing would add one clock to the

beginning of any instruction in which it occurred. It is not
included in this description.

C.7 NUMBER OF INSTRUCTIONS

How reasonable is the expectation that the opcode field will be 8

bits? In this list are 174 processor instructions, 64

floating-point-only, 79 integer-only, and 31 other. Character or

string operators still are to be added. There are 100 coordinator
instructions, of which 29 are for system and diagnostic actions.

Some instructions occur very frequently, and it is worth

shortening the opcode to pack them into a smaller word. For

example, IMOVEL and IJUMP are candidates for being 24-bit
instructions. If they are, then their opcode is only 4 bits long,

and they each occupy 16 of the 256 slots in an 8-bit opcode space.

It is not possible to have a floating-vs.-integer bit in the

opcode, and a half-word vs. full-word bit too, leaving 64 instruc-

tions in each category.

C.8 INSTRUCTION EXECUTION TIMING

Timings are given in Table C.2. For the processor instructions
there are four separate functional units involved. Each

instruction has a starting time in each of the three units and an
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ending time or does not use that unit. The time of execution of
each instruction is dependent on its time of occupancy (if any) in

each of the first three independent execution units, namely:

integer unit, floating point unit, and memory controls. The

timing is described most easily with respect to the in::truction
fetching process, which determines the starting time of each
successive instruction. The fourth function unit, the CN buffer,

allows EM fetches and stores to transpire in parallel with other

processing. It executes independently, once started, and does not

affect the starting of the next instruction, but may affect the
starting of the next instruction to use the CN buffer.

Entries in the table have the following significance:

"No. of clock periods" is the number of clocks from when the
instruction normally issues to a functional unit, to the
termination of the instruction. The instruction will always have

been decoded from out of the staging register for at least one

clock prior to this.

"Unit busy" is of the form n-m, where n is the number of the
latest clock that previous instruction is allowed to occupy this

unit, and m is the last clock that this current instruction

occupies this unit.

Some instructions stop the instruction fetching process for a
while, until the coordinator or CN buffer restarts it. The clock

times given for these instructions represent the time from first

decoding such an instruction in the staging register, until the
start of decoding of the next instruction, under the most

favorable circumstances. These are WAIT, STOP, HELP, and any

instruction using the CN buffer.

C.8.1 Instruction Fetch Timing

Timing of the instruction fetching mechanisms can be seen with

respect to Figure C.I. The next instruction is being held in a

staging register. Out of the staging register is decoded the

start times required for the functional units if this instruction
were to start at this clock, and the time it will occupy the

holding register. Also decoded are CN buffer requirements. Out

of the integer, the floating point, and the memory control
functional unit is decoded the ending time associated with the

currently executing instruction. Out of the CN buffer are the "I

got here", "busy" and "full" conditions. The "scoreboard"

compares all inputs. When all comparisons say the next
instruction will not interfere with current instructions, the
instruction is transferred from the staging register to the one or

more functional unit instruction registers. If delayed starts in

other functional units are part of this instruction, the

instruction is passed to the holding register to free the staging

register for the next instruction.
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The program counter always points to the next word in memory after
the staging register contents. Thus, normally the PM will be

holding teh next instruction word statically at its output lines.

Only when the staging register is unloaded in less than three

clocks (the PM cycle) or PM is accessing data will the next word

not appear.

A complexity is the existence of half-word and full-word

instructions. Second halves of instructions words carry the next

half word instruction, so full-word instructions may only have
their first half present in the staging register. The first half

is sufficient to determine the timing. However, the second half

will contain any memory addresses, so when a fetch from memory is

involved, the second half must also De fetched before the memory
part of the operation can start.

Those instructions which contain a memory address (either for data

or as a branch address), or a lite_:al, are full-word 48-bit

instructions. Others are 24 bits. FL, floating literal, is one
and a half words.

The arithmetic timings assume perfect rounding on single length

floating point operations, but that the excess precision makes

rounding unnecessary on double length operations.

Instructions labelled "branch" will cause all iookahead to hold up
until the direction that the branch takes is determined. Branches

defeat overlap. If the branch is taken, there will be additional

five clocks, three for fetching the instruction and two for fill-
ing the instruction lookahead mechanism, bofore the instruction

after the branch can start executing.

An alternative method of providing branching capability is to
separate the testing operation, which sets one or more result

bits, and the branch instructions, which test those bits. This

method has the advantage that one can define a scheme for having

lookahead fetch instructions along the branched-to path, rather

than in the fall-through direction. Since branches are usually
taken, some slight improvement in performance would accrue, in

addition to which the instruction set becomes somewhat simplified.

The instructions CLOADEMN, and CSTOREMN are assumed to be

implemented as a microprogrammed sequence of successive single EM

accesses. These could be substantially speeded up if hardware
were added so that the EM module could recognize these commands as

different from single LOADEM and STOREM, and keep the CN path
locked up.

The CN clock frequency is the third (submultiple) of the main

clock frequency.. With the main clock 40 ns, the CN clock is 120

ns. All passing of addresses and data through the CN will be
synchronized with this CN clock. Thus, the 6, 9, 12, or 15

clocks taken by instructions that pass data through the CN are
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actually 2, 3, 4, or 5 CN clocks. Operations involving the CN
buffer only, such as loading its registers or testing its

flipflops, can be done un any processor clock, and are not locked

to any one of the three phases of the CN clock. For example, the
instruction FSTOREM takes three clocks to load address and data
into the CN buffer if it finds it free. These clocks do not

depend on CN clock phase. However, the minimum of 6 clocks that

the CN buffer is busy involves sending data to EM, and can be the
minimum of 6 only if the SOTREM loads the data into the CN buffer

at the proper CN clock phase.

For an example of these timing rules applied, see Reference 2.

C.8.2 Coordinator Timing

The coordinator has a similar set of independent units. There is
an arithmetic unit similar to the processor's integer unit. There

is a memory control unit. For accessing EM, there is a CN buffer

unit identical to those found in each processor. The coordinator

also has access to a port on the EM side of the CN, from which it

can broadcast data to all processors, and "harvest" data from all

processors. This second port is part of the arithmetic unit, for

timing, and the compiler will ensure that the CN is idle whenever
the instructions that use this port, mostly the instzuctions that

are included for diagnostics, are used. These are the

instructions from BDCST through READPM in Table C.2. Although

they use the CN, they do not use the CN buffer.

The diagnostic controller is not used during normal program

running. It is used only for diagnostics and system
initialization. Hence, diagnostic controller information is not

required to generate timing information about user programs.

C.8.3 Synchronization

Synchronization enters into the timing analysis in two ways.
First, the instructions that use the CN buffer may test to see

whether "I got here" is up, and may test whether the CN buffer is
"full", "busy" or neither. The actual tests required are listed

in the descriptions of the individual instructions. These
instructions then wait until the CN buffer takes on the

appropriate state before continuing. Some of these instructions
leave the CN buffer with an unexecuted command, such as STOREM

that will be "busy" until the address and data has been

successfully emptied into an EM module, or LOADEM which will be

"busy" until data comes back from EM to make it "full". The

processor will be free to go on executing any instruction except
those which depend on the CN buffer having gotten to the new

state. Some CN buffer states require action on the part of the

coordinator. For example, only after all processors execute
EMFILL can the coordinator execute the HVST instructions. Only

after all processors execute EMREQ can the coordinator execute the

corresponding FETCHEM or BDCST. Only after the coordinator has
executed FETCHEM or BDCST can the processor execute the REM

instruction that accepts the broadcast data.
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The second synchronization method involves single processor

instructions such as WAIT. The processor checks to see if "I got

here" is down from any previous case. If not, it waits for "go"

to come from the coordinator to reset "I got here". Then the

processor raises "I got here", and waits for "go" before fetching
the next instruction.

C.8.4 Exceptional Cases

Within the processor, all fault cases result in an interrupt to
system software that is resident in the processor estimated at

less than IK words. It is possible to handle some interrupts

without interrupting the CR Floating-point out-of-range detec-

tion does not cause interrupts, but results in setting the
floating-point variables into "infinity" or "infinitesimal" Any

integer overflow causes an interrupt, on the theory that most

integer operations are address calculations and overflow repre-
sents a faulty address. Attempting to insert a number outside the

range _215-i into a 16-bit integer register causes an integer

interrupt; likewise executing a FIXD (double-length integer) on a
number outside the range ±231-1 results in interrupt. Any

detection of error in the error-detection-correction logic results

in processor interrupt. When the error is correctible, the
interrupt merely logs its occurrence and returns to user

processing within a few microseconds.

The processor enters interrupt mode whenever any bit of the inter-

rupt register, not disabled by the corresponding bit of the mask

register, is set. The "interrupt" mode flipflop is visible to the
coordinator, which can interrogate whether any processor is in

interrupt mode. One of the bits of the coordinator interrupt

register is the "all processors ready" signal, thereby allowing

the coordinator to perform system software functions during its
long waits in user program.

Note that there are two lines from the processor to the coordi-

nator that can be called "interrupt" lines. The processor HELP

instruction raises an "interrupt" line that sets the "processor
interrupting" bit in the coordinator's interrupt register. The

"processing interrupt" mode of each processor can be interrogated
by the PINT instruction of the coordinator. In one case the

intent is for the processor to interrupt the coordinator; in the
other, the processor has been interrupted.

C.9 INTERRUPTS

Both coordinator and processor have an interrupt register. Pro-

cessor interrupts are to processor-resident software, for logging
recoverable errors, processor software will return to user proces-

sing within a few microseconds. For non-recoverable errors,
processor software issues an interrupt to the coordinator in order

to shut down the entire FMP. In the processor, the list of inter-

rupts is (with recoverable interrupts identified):
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Single erro_ corrected in processor memory(recoverable)

Double error detected in processor memory

Single error corrected in word received from CN buffer

(recoverable)

Double error detected in word received from CN buffer

Parity error in microprogram word

Memory bounds error

Uninitialized word fetched from EM

Unnormalized floating point operand detected

Integer overflow

Divide by zero integer

Divide by zero floating point

Error detected in logic operation of EU

Software generated interrupt (set by ICALLI) (recoverable)

Illegal Op Code

Floating point overflow and underflow are caught by changing the
word to "unpresentable" (or loosely, "infinity") and "infinites-

imal". Divide by floating point zero also results in "unrepre-

sentable", so for some purposes this interrupt would be masked off
as redundant. There is a control bit which determines whether

integer underflow results in infinitesimal or zero. The single
error corrections are serviced by a routine resident in the

processor which logs their occurrence. Return is to the user

program. Most other interrupts will result in program termin-
ation. It is the design intent to save the memory address and the
corrected bit number for error corrections and the memory address

of double error detections.

In the coordinator, the interrupt register has the following bits:

EM module error EM module parity error data in (address)

Single error detected in coordinator memory

Double error detected in coordinator memory

Single error detected in word received from CN buffer
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Double error detected in word received from CN buffer

Parity error in microprogram word

Processor interrupt (sent by processor)

All processors ready (interrupts system software to get user

program's instruction executed)

Memory bounds in coordinator memory

Illegal opcode

Memory bounds in EM

Support processor interrupt

DBM result descriptor ready

Diagnostic controller interrupt

Timeout, no instruction executed for the last X ms.

Interval timer count down to zero

Integer overflow

Divide by zero

Logic error detected in coordinator operation

DBM controller error detected

Software generated interrupt (set by CCALLI)

Unrecoverable interrupts enter interrupt processing at address 0.
Recoverable interrupts (single error corrections and ICALLI in the

processor, in the coordinator single error, CCALLI, interval
timer, support processor interrupt) enter interrupt processing at

a second, hard-wired address. In the coordinator, the "all

processors ready" interrupt has its own hard-wired address.

Processor interrupts interrupt to processor-resident software;
coordinator interrupts interrupt to coordinator-resident software.

C.10 SUBROUTINE ENTRY AND RETURN

A description of how this is done.

Environment

Two integer registers are permanently degignated as
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SB The pointer to the "base" of the address space for the
current subroutine

SL the pointer to the limit of this address space

(actually points to the first word beyond the
allocated space).

"S" stands for "stack", since space is allocated as a stack.
Fig. C.2 shows this stack.

C.lO.l Subroutine Entry

Prior to the call, the variables temporarily held in registers
must be stored back in PM if there is any chance the called subrou-
tine will reference them. Registers that the called subroutine

will use must also be saved. The compiler simply stores every-
thing back to its "home" address in PM.

At the place pointed to by SL, the caller next writes any para-

meters passed by value (where this is allowed in our FORTRAN), and

the base addresses of any arrays being passed, and the descriptors
of any named common areas. There are P words in this area, where
P is known to the compiler.

Next, the CALL instruction is executed. It does the following:

i. The content of SB, SL, and program counter
concatenated and written into address P+SL.

are

2. Register SB is loaded by SL + P

3. Register SL is loaded by the new value of SB plus a

literal, the space allocation known to the compiler.

CALL therefore has two parameters, the number of parameters
passed, and amount of space allocated. In ANSI FORTRAN 77, both
of these would be literal fields in the instruction. For some of

the dynamic array sizes that are allowed in FMP FORTRAN, it will
be necessary to insert code to compute the size, and leave it in

an integer register. The absolute program address is computed
from the content of the branch address field and inserted into PCR
for fetching the next instruction.

C.I0.2 Subroutine Return

RETURN executes as follows:

i. Fetch the word addressed by SB

2. Unpack that word into SB, SL, and the program counter.
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SUBB LOCAL
VARIABLES

RETURN PCR [ SUBALIM [SUBABASEAOO

SUBB PARAMETERS
8 DESCRIPTORS

ANY NAMED COMMONS

SUBA LOCAL
VARIABLES

RETURN PCR [ MAIN LIM MAIN BASEAOD

MAIN LOCAL
VARIABLES

/
,,,E.RU,,,_R_/////////X/////////_

BASE ADDRESSES OF
ANY NAMED COMMONSIN MAIN

SUBB LIMIT

SUBA LIMIT

LINK

SUBA BASE ADDRESS

PARAMETERS & NAMED COMMONDESCRIPTORS

MAIN LIM

LINK

)
MAIN BASE ADDRESS

Figure C.2 Subroutine Stack
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Figure C.3 Stack Allocation in the Data Area
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Figure C.4 Organization of Named Common
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If the subroutine is a function, the results of that function will

be left in a single-length or double-length integer or

floating-point register as appropriate. The register is

determined by convention, and is the same for all functions of the
same type.

C.I0.3 Within the Subroutine

Working space is addressed by positive offsets relative to SB. We

have 12 bits of address that may be added to an integer register

as part of the normal addressing machinery. When 12 bits is not

enough, the compiler will have to use integer instructions to
build the address.

Parameters and base addresses of named common areas are accessed

by negative offsets from SB, as implied in the description of

entering a subroutine in C.10.1.

C.10.4 Addressing

With the above structure, absolute addresses may be used for

simple variables in the main program and for blank COMMON.

Varying degrees of indirection are implied, the most complicated
case being an element of an array in a named common in a

subroutine, where an offset from SB is used to find the base
address of the named common, an offset from that base is the base

of the array, and the element is offset from the array beginning.

(A smart compiler may combine the last two into a single offset
and will fetch the base address of a named common to an integer

register upon its first use.)

C.10.5 Named Common Mechanism

A second stack of space is allocated to all the named commons. If
the first stack grows by increasing addresses, the second stack

may grow by decreasing addresses. For example, see Figure C.3.

At address zero of each named common is a count of how many
subroutines are currently active which name that common. Each CALL

goes through the descriptors in the parameter area and increases
each count. Each RETURN goes through the descriptors in the para-
meter area and decreases each count. A named Common used in all

subroutines lasts the entire run, therefore as does blank common.

The words at address zero also contain the size of the named

common, so that they form a relatively-addressed linked list to

each other. See. Fig. C.4. Whenever the count goes to zero at

the last named common, the stack limit of the second stack is
decreased to the first non- zero count.

In ALGOL, where addressing environments are nested in lexic

levels, the above mechanism always releases space upon the exit
from the last lexic level that needs that space. In FORTRAN, if

we adopt the above mechanism, it is possible to undefine a block
of space inside this second stack, but it won't be released until

the spaces "above" it in the second stack are themselves released.
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A named common disappears whenever no subroutine owning it is

active. A named common descriptor will either be found in the

calling subroutine, upon subroutine entry, or must be created.

i

Thus, the presence of the appropriately named descriptor in the

calling subroutine causes the descriptor to be copied; while the

absence of an appropriately named descriptor causes new space to
be allocated, and a new descriptor to be created.

A provision for statically allocated common areas, that survive

for the life of the job, can easily be made if desired. They have
been omitted from this description because such statically allo-

cated variables occupy needed space during times that they are
inactive, and because such static allocation, outside of blank

common, is not needed for compliance with FORTRAN 77. In the 3D

implicit code, as explained in Appendix A, the maximum mesh size
would be smaller if all variables were statically allocated.

C.10.6 Arithmetic Details

The design intent is to provide perfect rounding. A floating

point number is a discretized representation of an assumed under-

lying real number. When two floating point numbers are combined,
the result is to be the closest representation possible of the

real number result from combining the two underlying real numbers.

Thus, whenever the guard bits are less than one half a least

significant bit, the surviving part of the mantissa shall be left
alone. When they are more than one half a least significant bit,

one is to add 1 to the surviving part of the mantissa. In the FMP

processor, a full double length accumulator cannot be justified.

Therefore, when the eight guard bits are exactly one ONE followed
by ZEROs, they may represent one ONE followed by seven ZEROs,

followed by additional unknown bits, hence we round by adding 1 in

the least significant place whenever the most significant guard

bit is ONE. Alignment of addends is done in one clock, with a
barrel, hence the implementation of a "sticky" bit represents

substantial hardware investment.

Guard bits and rounding are used to preserve precisions in single-

length arithmetic (36 bit precision, but not in double length (72

bits precision), giving roughly ii decimal digits and 21 decimal

digits of precision respectively.

Rounding occurs after normalization. Since we have six-or-eight

guard bits, rounding is a no-op when normalization requires a left

shift of more than six-or-eight places. The guard bits, shifted
into the result by the normalization, protect precision

effectively.
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Rounding after addition can be simplified by observing that when-
ever mantissa overflow occurs after the rounding, the resulting
mantissa must be .100000 . However, we have to add one to the

exponent. Since the exponent adder is not otherwise busy during

rounding, we have exponent in the result register and exponent +I

being presented at the output of the exponent addez, so that, if
rounding overflows, exponent +i is loaded into the result exponent

field, while .1000000000 is loaded into the mantissa, all without

requiring any additional clock.

A zero result that may get rounded away from zero is a special

case. The sign and exponent of an apparently zero result must be

saved until after rounding, to accommodate the case that the
result will be rounded away from zero. All zeroes have positive

sign and the smallest allowable exponent.

In multiply, normalization and rounding are done together in one

clock. A product never overflows, and normalization is by either
no or one place. Add 1/4 of a LSB to the product on the last cycle

of multiply using the carry input to the second guard bit. Thus,

if normalization by one place is required, the product is already

rounded. If normalization is not required, add another 1/4 of a

LSB. Only 2 guard bits are needed at the end of multiply (al-

though more are needed to keep the partial products honest during
the formation of the final product). Thus normalization and

rounding take one clock altogether. At that last clock: norma-

lize the already-rounded product if the leading bit is ZERO;

select the output of the adder (Result + 1/4 (LSB)) if the leading
bit of mantissa is ONE.

C.i0.7 Other Instructions

Some operations are implemented as simple by-products of the

instructions in Table C.I. By-product instructions include:

Convert from single-precision to double-precision. Given by

FADDXL, literal=zero.

Convert from double-precision to single-precision.

the first half only of a double-precision word.

Address

Divide (multiply) integer by power of two. ISHN(L).

Extract fraction-part from floating-point word.
literal = zero. Useful in mathematical functions.

FMOVEXL,

Half-word and full-word No-ops.

C-18



TABLEC.l
ProcessorInstructions

moatin_

FADD(M,L) ,

FSUB(M,L)

FMUL(M,L)

FDIV(M,L)

FDVR(M,L)

FMAD(M,L),
FSUB(M,L)

FSSQ(M)

FADEX(L)

FMOVEX(L)

FABS(M)

FNEG(M)

FADDX(M,L) ,

FSUBX(M,L)

FMULS

FADDD, FSUBD

FMULD

FL

Reg I plus (or minus) operand -_ Reg 3

Beg I times operand -_ Reg 3

Reg I divided by operand -_ l_g 3

Operand divided by Reg I -_ l%eg3

Beg I times operand is added to (subtracted from)

rag3 -_ _g3

}_egI squared plus operand squared -m Reg 3

_d operand (if literal, may be limited to 8-bit literal in
countfield) to exponent field in fl. pt. reg. If operand

is in register, it will be an integer register.

Transfer operand (from int. reg., or literal) to exponent

field in fl. pt. reg.

(in both the above instructions, the operand is in integer

format and will be converted to floating point exponent

format during the course of the instruction.)

loperandl -_ Beg

minus the operand -_, l_j

Reg I plus (minus) operand -* Reg 3 & next (double-length)

Double length product of _gl and Reg 2 -_ Reg 3 & next

Double length s_ (difference), l_g I & next (op) Reg 2

& next -_ Reg 3 & next

Double length product of two double-length operands. I_i

& next * Reg 2 & next -_ Reg 3 & next

The 48 bits following this opcode -_ Reg 3
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FMOVE(M,L)

FPAKM

FUPKM

FIXD

FIXF

FIXC

FINFLZ

FIXEX

FMT

FMTI

FLOAT

FLT(L,M),

FLE(M,L),

FGT(L,M),
FGE(L,M)

O_erand-_ Reg3

Most slg. 24 bits of Reg I & most sig. 24 bits of

Reg 2 --> memory

From memory, the most sig. 24 bits of m_nory w_rd & 24

zeroes -_ Regl, the least sig. 24 bits of memory word

& 24 zeroes -_ Beg 2.

R_g -m memory.

Convert operand in fl. pt. RRg. to nearest rounded

integer value -m int. Reg.

Convert operand in fl. pt. reg. to nearest rounded integer

value--_ int. Reg & int. Reg.+l

Convert operand in fl. pt. reglto integer whose absolute
value is the largest possible but not larger than the
absolute value of the original operand. Result -_ int.

Reg 2 . (floor )

Convert operand in fl. pt. Beg I to integer whose absolute

value is the smallest possible not maaller than the

absolute value of the original operand. Result -_ Int.

Reg 2. (Ceiling)

If l_egI contains "infinitesimal", zero -_ Reg 1

Convert exponent in fl. pt. reg. to integer format -p int.

Reg.

Convert content of fl. pt. reg. to floating point format

used by the B-7800. (Will be microprogrammed, and will
use logic in the integer unit.) If "unrepresentable" or

exponent out of range, interrupt.

Content of fl. pt. register is ass_ed to be in B-7800
floating point format, and is converted to internal FMP

floating point format.

Convert integer in int. Reg. to fl. pt. format-_ fl.

pt._.

If I_ 1 tests LT (or LE, GT, GE) operand, then GOTO
branchaddress.
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FEQL

FLTD

FGTD

SETFL

SETZ

IADD(M,L),

ISUB(M,L)

IAI1)l, ISUBI

IMDL(M,L)

IDIV(M,L)

I_O_(M,L)

IMOD521

If ist 16 bits of Beg equal 16-bit literal, GOTO
branchaddress. _his yields tests for zero, "uninitialized",

"infinitesimal" and "unrepresentable/infinity", since these

are all encoded in ghe exponent field. No floating-point

word with zero exponent is allowed except zero itself.

(Tests for equal in floating point have otherwise been
eliminated as useless and misleading.)

Double-precision compare. If Regl & next is less than

Reg 2 & next, GOTO branchaddress. (Reverse registers
for .GE.)

If Reg I & next is greater than or equal to reg 2 & next,
GOTO branchaddress. (Reverse register addresses for .LE..)

Set infinitesimal control bit. Exponent underflow there-
after results in "infinitesimal".

Reset infinitesimal control bit. Exponent underflow

thereafter results in zero.

Beg I plus (minus) operand -_ Reg 3

Regl plus (minus) 1 -_ Reg I

Regl times operand -_ l_eg3

R_g I divided by operand -_ Beg 3

Beg I modulo operand -_ Reg 3

Regl & next modulo 521-_Reg 3. (This is a special; fast,
instruction, as it is needed to determine KM module nunber

from EM address. Estimated, 4 clocks.) (Note the absence
_^_ _w_.v"_ A Div_I2 will be built into the address path

to CN buffer, taking no time. The 1.8% holes left this way

in memory can be addressed by a different set of address

computations; they will be in a logically disjoint address

space. )

%
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IADDX(M,L),

ISUBX(M,L)

IMUIX(M,L)

IDIVX(M,L)

IMODX(M,L)

IADDD, ISUBD

ISH(C,S,N)(L)

ISH(C,S,N)D(L)

IOR(M,L),

IAND(M,L),

IIMP(M,L),
IXOR(M,L)

INOT(M,L)

IDL

IADDL

IMOVE(M,L)

IDM/K_E(M,L)

IPNO

IPAK3M

IUPK3M

IPAK3F

Reg I & next plus (minus) operand -_ Reg 3 & next

(Double-length and single-length operands combined into
a doublelength result)

Reg I & next times operand -_ Peg 3 & next

Beg I & next dlv_de_ by operand -m Peg 3 & next

Reg I & next modulo cnerand -m Reg 3

Reg I & next plus (minus) Reg 2 & next -_Reg 3 & next

Shift Reg I end-around (or end-off, or ntm_eric with

sign-bit fill if right or zero fill if left) by the dis-

tance shown by the operand (positive is shift left, to
coincide with the requirements of ntlneric shifts)

Shift, as above, except double-length. Reg 1
& next.

Reg I OR (or AND, implies, exclusive OR) operand -mReg 3

NOT operand -m Reg 3

Literal (32 bits) -_ Reg & next

Beg & next plus literal (32 bits) -_ Peg & next

Operand -m __meg2

Operand -_Reg 2 & next (if operand is register, it is a
doubl-e length register)

Processor number (wired into backplane) minus "sparebit"

-_ Reg. Sparebit = 1 if processor above the spare location,
=0 if processor below. Leading two bits are cabinet ntmber,

and are not involved in the subtraction, since each cabinet
has one spare.

Reg I & Reg 2 & Reg 3 -m memory

Memory -_ Reg I & Reg 2 & Reg 3

Reg I & Reg 2 & Reg 3 --m fl. pt. reg. (because of

instruction format limitations, not all three int. Beg. will
be explicitly addressed, one or two of them will be "next"
int. Reg.
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_J

IUPK3F

IS_0RE

IDS_0RE

ILT(M,L) ,
ILE(M,L) ,

I_(M,L) ,

IGE(M,L) ,

IEQ(M,L) ,

INE(M,L)

IDLT, IDGT,

IDEQ, IDNE

IBIT(L)

CN Buffer

FSTOREM

ISTOREM

IDSTOREM

I3STOREM

MSTOREM

FI. pt. Reg. -_ _egI _ Reg2 & Reg3

32 zeroes & Reg -_memory

16 zeroes & Reg. & next -P memory

If Reg I test LT (or LE, GT, GE, _Q, NE) operand, then
GOTO branchaddress

If Regl & next tests LT (or GT, EQ, or NE) to Reg 2 &
next, then GOTObranchaddress. (Reversal of registers

provides the relatlons.GE, and .LE..)

If any bit of Reg ANDedwith operand is ONE, GO_O
branchaddress

Wait for CN buffer to become NOT "busy". Send int.

Reg. 1 (EM module number) and int. Reg 2 & next
(_4 address) to CN buffer address portion, send fl. pt.

Beg 3 to CN buffer data portion. Mark CN buffer "busy".
(Following this instruction, CN buffer will story "busy"
until an acknowledge is received from the EM module, and
the buffer contents transmitted. Buffer will then be NOT

"busy" and NOT "full". The processor instruction execution

does not wait for any of this to happen. )

Same as FSTOREM except substitute int. Beg 3 for fl. pt.

Reg 3 •

Same as FSTOREM except substitute int. I_ 3 & next for

fL pt. _eg3.

Same as FSTOREM except substitute int. Reg 3 &Int Reg 4

& int. Reg 5 for fl. pt. Beg 3. Format limitations will

probably force the use of implicit addresses for Reg 4 and

Reg 5. They are likely to be the next two after Reg 3.

Same as FSTOREM except substitute memory for fl. pt. I_ 3.

(Note the asymmetry between STOR_M and LOADEM. In LOADEM,
the selection of destination is separated from the EM

address operation, in order to allow the compiler to optimize

the sequencing of instructions. In STOREM, the instructions
are combined in order to save code space. )
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mm_Q

EMFILL

LOADEM

LOCK_

FREM

IREM

(Formerly "FETCHEM" and "BDCS_', but with the r_ew CN these

initiating actions are the same for both, i.e., just one

instruction) Wait for "I got here" to be reset, if up.

If CN buffer is "busy", wait for CN buffer to become NOI _

"busy". Raise "I got here". (Later, data will arrive in
the CN buffer, which will then be marked "FULL", and the

data can be read by any of the -REM instructions. Depend-

ing on whether the coordinator executed a FETCH_M or a
BDCS'f instruction, that data will have arrived from EM or

from the coordinator itself.)

(Formerly "HVST" and "SHIFTN", but with the new CN these

initiating actions are the same for both, just one

instruction.) If CN buffer "busy'*, wait for NOT '*busy*'.

If "I got here" is up, wait for "go" to reset it. Raise
"I got here", load CN buffer (datapart) from fl. pt. l_g,

and set CN buffer to "busy". (Following this instruction,

the coordinator will set the CN, to a "broadcast" condition

if HVST, or to a "wraparound" condition if SHIFCN, and
move the data from the CN buffer. If SHIFCN is in the

coordinator instruction stream, then the compiler will have
inserted some form of -REM instruction later on in the

processor instruction stream to read the now "full" CN

buffer. Other sources of data are expected to be used so
seldom that instructions to HVST or swap data to and from

integer registers and memory are judged to be a waste of

decoding complexity. )

Send Peg I (EM module no. ) and l_eg2 & next (EM

address) to CN buffer, after waiting for TN buffer to
become NOT "busy". CN buffer will now become "busy"

until data arrives from EM, whereupon CN buffer becomes

"full". Fetch next instruction without waiting.

Send Reg I (EM module no. ) and Reg 2 & next (I_4
address) to CN buffer, after waiting for CN buffer to

become NOT "busy". CN buffer now becomes "busy" until

data arrives from EM, whereupon CN buffer becomes "full".

Processor does not wait in this instruction beyond the

loading of the CN buffer. EM module will set the least
significant bit of the word in memory to ONE after

transmitting the previous contents to the CN buffer.

(Used for inter processor cooperation via EM independently
of the coordinator. )

wait for CN buffer NOT "busy". If now NOT "full", error

interrupt. CN buffer -m FI. pt. Beg. Mark buffer NOT

"full" and NOT "busy".

Same as FREM except CN buffer -m Int. _.

%
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IDREM

I3REM

MRF_

ITIX

ITIXI

ITIXL

IJUMP

ICALL

IRETURN

PUSH

POP

TOS(L)

WAIT

STOP

HELP

lINT(L)

Same as FREM except CN buffer -_ Int. Reg & next

Same as FRI_4 except CN buffer -_ Int _ & next & next

Same as FREM except CN buffer -m memory.

First; R_g I ÷ Reg 3 -_ Reg I. Then, test Beg 1

against Reg 2, test for greater if I_eg3 is positive,

for less if Reg 3 is negative. If test succeeds, GOID
branchaddress.

Same, except an implied literal value of +I substitutes for

Reg3

Same, except an actual literal substitutes for Reg 3

GOTO branchaddress

Subroutine entry. Push subroutine stack. Parameters and
new working area are relative to the new stack address

pointer.

Subroutine return. Pop subroutine stack.

Push subroutine stack, do not change PCR (diagnostics).

Pop subroutine stack, do not change PCR (diagnostic use)

Set stack address pointer and the word pointed to new

values found in Regl, Beg 2 and in operand. (Stack
mechanism involves not only a stack address pointer, but
also return information and address bound(s) in word 0

relative to that pointer.)

Wait for reset of "I got here" (if it is up). Raise

"I got here". Wait for "go" before fetching next
instruction.

Wait for reset of "I got here". Reset "enable". Raise

"I got here". Resetting of "enable" disables all further

instruction fetching.

Same as S%DP plus raise "interrupt" line to coordinator.

Interrupt register AND operand -- Reg 3. Interrupt register

AND NOT operand -_ interrupt register. Operand is _2
or literal.
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ISMaSK(L)

n_K(L)

ICALLI

IRETI

Interrupt mask register OR operand -_ interrupt mask
register

Interrupt mask register AND operand -m interrupt mask
register

_ter interrupt mode

Return from interrupt

%

i _', C-26

k.



i

I

i

RES_

HALT

FILLM

FILLME

FILLR

READR

READM

Table C.l, part 2

Processor operations induced by eo_mmnds issued by the
coordinator.

l_set "enable" immediately. Do not wait for current

instruction to finish. Beset "busy" in CN buffer,
Beset "I got here".

Beset "enable" only. Allow current instruction to complete.

Load word in CN buffer into processor memory. Increment

memory address by I. (MAR has previously been loaded)

Same but conditional on "enable".

Load register fr_CNbuffer. Register address will
follow this code on the command lines.

Same as FILIR except conditional on "enable".

/_dress processor. Beset "enable".

CNbuffer against proeessor ntmber.
"enable".

Check contents of

If matches, Set

Transmit contents of register to CN buffer. Register
address will follow this code on the conmmnd lines.

Read word from memory and transmit to L_ buffer. Increment
memory address by i. (Register addresses will include

registers not addressible by the address fields in the

processor instruction set, such as PCR and memory address
register. )
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Arithmetic

CADD(N, L),

CSB(N,L)

CADDI

CSUBI

CMUL_N,L)

CDIV(N,L)

CMOD(N, L)

CMOD521

CSH(C,S,N)(L)

CAND(N,L),

COR(N,L),

CIMP(N,L),
C(OR(N,L)

CNOT(N,L)

CMOVE(N,L)

CDL

CADL

CSTORE

CGT(N,L) ,
OGE(N,L) ,

CLT(N, L) ,

CLE(N,L) ,

CEQ(L,N) ,
CNE(N,L)

CBIT(N,L)

TABLE C.I, part 3

Coordinator Instruction Set

Reg I plus (or minus) operand -_ Reg 3.
"N" to designate coordinator memory)

Reg I plus i -_ Reg 1

Beg I minus 1 -_ Reg 1

Beg I times operand -_ Beg 3

Reg I DIV operand -m Reg 3

Reg I module operand -m Reg 3

(Note the use of

Beg I modulo 521 -_ Reg 3. (Substantially faster than
CMODL with literal = 521)

Shift end-around (or end-off, or n_eric) the operand in

Reg I by the distance shown in operand (reg2 or
literal)

Beg I AND ( OR, implies, exclusive OR) operand -- Reg 3

NOT operand -m Beg

O_rand -_ Reg

32-bit literal -_ Reg

Reg I plus 32-bit literal -)Reg 1

Reg -_ memory

Test Bsg I for GT (or GE, LT, LE, BQ, NE) against
operand, if test is true, GOTO branchaddress.

If any bit of Beg AND operand is ONE, GOTObranchaddress.

%

i
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Other Branch Controls

C_T.X First: Regl + Reg3 -m Reg3. Then, test Regl
against Reg2, test for greater if I_ 3 is positive,
for less if Beg3 is negative. If test succeeds, GOlD
branchaddress.

CTIXI Same, except an implied literal value of +i substitutes

for Reg3.

CTIXL Same, except an actual literal substitutes for Reg3

C2UMP GOTO branchaddress

CCALL Call subroutine, push subroutine stack.

CREKmN Return from subroutine, pop subroutine stack.

CPUSH Same push-stack action as CCALL, but do not change program
counter.

CPOP Same pop-stack action as CRETUI_, but do not change program
counter.

CTOS(L) Change stack pointer by loading it with operand

CRETI Return from interrupt

CCALLI _ter interrupt mode.

Other

CLOADEM Fetch to RegI from EM. _4 address is in Reg2, _4
module no. is in I_3. (Separation of _4 address and EM
module no. permits accessing of both address spaces within
the EM. Note that the "EM address" will be stripped of
its last 9 bits before being transmitted to the EM as an
"address within module". )

Same as CLOAD_4 except that the EM module will set the
least significant bit of the word in memory to ONE after
fetching the word sent to the coordinator.

CLOADEMN(L) Fetch N words from EM: store to coordinator memory.
Memory address is in instruction. EM address is in Reg2,
EM module no. is in Reg3. N is BegI or literal.

CSTOREM Store RegI to EM. EM address is in Reg2, module no.
Ir_Reg3.
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CSTOI_RN(L) Store N words from memory to EM. _ address is in Beg2,

module no. in Beg 3. N is Peg I or literal (actually,
countfield)

CrNT(L) Interrupt register AND operand -_ Reg 3. Interrupt
register AND NOT operand -_ interrupt register. Operand is

Rag 2 or literal

_ASK(_.) Interrupt mask register OR operand -m interrupt mask

register.

C_SK(L) Interrupt mask register AND operand -_ interrupt mask

register. Any interrupt bit so unmasked causes interrupt
when ONE.

(Note: The instructions in the coordinator up to this

point represent functionally a subset of the processor
capabilities. One possible implementation of them would

be to use a copy of the processor as most of the coordina-

tor. We believe that the coordinator needs 32-bit integer,

and needs more integer registers, too often for this to be
a good idea. )

(The following instructions represent coordinator capa-
bilities which are not needed in the processor. Indeed,

one of the reasons for having a separate coordinator is

so that these functions need not be replicated 512 times,
once per processor, nor do the processors require the

connectivity to the points (D_ controller, host, etc.)

that these functions imply.)

Processor Cooperation

FETCHEM From EM address in Reg2, and EM module no. -in Reg3, cause
the given _4 module to cycle, and the result broadcast to

the CN buffer of all processors. Start of instruction will
wait on "All processors ready" and "go" will be issued at

an appropriately delayed time.

S_I_CN(L) Wait for "All processors ready". Send "wraparound" command

to CN level N, _here N is found in Reg or literal. Send
"G °" •

LOOP Wait for "all processors ready". If NOT "any processor

enabled", set the "enable" bit of all processors, and exit

the instruction. If "any processor enabled", issue "go"
and GOTO branchaddress.
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SYNC Wait for "all processors ready". Issue "go"

EDCST Wait for "all processors ready". Set CN to "broadcast"

mode, last 48 bits of Beg & next to CN buffers of all

processors. Issue "go".

BDCS_N Wait for "all processors ready". Set CN to "broadcast"
mode, send word fetched frcm coordinator memory thru CN to

all CN buffers. Memory address has normal address format.

HVST Wait for "all processors ready". Set CN to "harvest"
mode, contents of all CN buffers that are "full" are

cc_bined (ORred is acceptable; the actual formula for
combining is logic designer's option) and transmitted to

the last 48 bits of Beg I & next.

PINT If "any processor in interrupt mode". GOTO branchaddress

Actions Impo_ on Processors

UBDCST Send N words to processor. N in Reg I. Words taken from
successive addresses in coordinator memory starting at

address given in instruction. (Processor will have

previously been put into a waiting or NOT "enable"d state,

and its MAR loaded with the starting address in PM.)

UBDCSTE Same, except acceptance of data is conditional on "enable"

bit of processor.

USETP Send contents of Reg I to processor register whose

address is in }_eg2. (Used for initializing PCR, setting
MAR, as well as for transmitting ordinary data. )

USETPE Same except conditional on "enable" bit of processor.

USETPO Same as USETP except that "enable" bit of all processors is
turned on at end of instruction.

USETPEO Same as USETPO except that acceptanee of data is conditional

on previous state of enable bit.

HALTP 1_set "enable" of every processor.

S_OPP Reset "enable", "I got here", and "busy" of every processor.

Processors will cease executing in mid-instruction.

TESTP If "all processors ready", GOTObranchaddress.

RFADP Word from processor register addressed in Beg I is brought
back to Reg 2 and the register following Reg 2.
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READPM

READPMN

PROC

TESTE

SPARE

SETC_(t)

TIOM

STATUS

TIOH

HOST

SCLOCK

RCLOCK

Word from processor memory (at address set by MAR of

processor) is brought back to Reg 2 and the register next

after Beg 2.

N words from processor memory, starting at the address
found in this instruction. _his and previous two instruc-
tions are conditional on the "enable" bit.

Wait for "All processors ready _ . Send ADDR commm%d with

contents of Reg I as the processor n_nber.

If "any processor enabled", GOTO branchaddress.

Change the designation of spare processor, or of spare EM
module. _here are four registers designating spare proc-

essor, and four registers designating spare EM module.

These registers are readable with the CMOVE instruction.

Set CNcontrols to bit pattern found in register (literal).

This command modifies CN function for diagnostic

purposes, such as restricting access to one or the other
sheet of a two-sheetCN.

l_g I & next transmitted to DBM controller as control word.

Status word of DBM controller fetched into Reg I & next

(Status will be same as control word, except word count
will be decremented to current state, and a field of status

bits may have been changed by the D_M controller. Format

TBD.)

Beg I & next transmitted to host-readable register.
Interrupt host.

Read host read and writable register into Beg I & next.

Transfer _ to real-tlme clock. Clock decrements at a

fixed rate, TBD, causing interrupt when it decrements past

zero. Setting the clock resets the interrupt bit, if up.

Transfer contents of real-time clock counter to Reg.

C-32



!

i

n
c__'

n

Mnemonics

FADD, FSUB

FADDM, FUSUBM

FADDL, ASUBL

FMUL

FMUiM

FMULL

FDIV, FDVR

FDIVM, FDVI_

FDIVL, FDVRL

FMAD, FSUB

FMADM, FSUBM

FMADL, FSUBL

FSSQ

FSSQM

FADE_

FADEXL

FMOVEX

FMOVEX5

FABS, FN_G

_%BLE C.2

PROCESSOR INSIWJC_IONS

Half Proc,

or Clock

Full Count
Word

% 6

1 9

1 6

½ 9

1 i0

1 9

½ 44

1 47

1 44

½ ii

1 14

1 ii

½ 21

1 24

½ 2

2

½ 2

½ 2

½ 1

Int. F.P. Mere. Min.

Unit Unit Busy CF Buf.

Busy Busy Busy

0-6

0-1 3-9 0-3

0-6

0-9

0-I 3-12 0-3

0-9

0-44

0-1 3-47 0-3

0-44

0-Ii

0-i 3-14 0-3

0-ii

0-21

0-1 3-24 0-3

0-2 0-2

0-2

0-2 0-2

0-2

0-I
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TABLE C.2

PROCESSOR INSTI_CTIONS (Cont)

Mnemonics Half Proc. Int. F.P.

or Clock Unit Unit

Full Count Busy Busy
Word

FABSM,

FADDX FSUBX

FADDXM, FSUBXM

FADDXL, FSUBXL

FMHLX

FADDD, FSUBD

FMULD

FL (48-bit, only 1% word format)

FMOVE

FMOVEM

FMOVF_

FPAKM

FPUPKM

FSTORE

FIX, FIXF, FIXC

FIXD

FINFLZ

FIXEX

FMT

1 4

% 7

1 i0 0-i

1 7

% 15

% 7

½ 22

1% 4

% i

1 4 0-i

1 1

1 9 6-7

1 5 0-1

1 3 0-i

½ 4 3-4

% 5 3--s

% i

% 3 0-3

% 7

3-4

0-7

0-10

0-7

0-15

0-7

0-22

1-4

0-1

3-4

0-1

0-6

2-5

0-3

0-3

O-3

0-1

0-1

0-7
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Busy

0-3

0-3
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TABLE C.2

PROCESSOR _CTIONS (Cont)

Mnemonics Half Proc.

or Clock

Full Count

Word

Int. F.P. Mere. Min.

Unit Unit Busy CF Bur.

Busy Busy Busy

FMTI

FLOAT

FLT, FLE, FGT, FGE (branch)

FLTM, FLEM, FGTM, FGEM (branch)

FLTL, FLEL, FGTL, FGEL (branch)

FEQL (branch)

FLTD, FGTD (branch)

SETFL, SETZ

IADD, ISLe, IADDI, ISUBI

IADDM, ISUBM

IADDL, ISUBL

IMUL

IMLKM

IMULL

IDIV, IMOD

IDIVM, IMODM

IDIVL, IMODL

IMOD521

IADDX, ISUBX

%

%

%

1

1

1

%

%

%

1

1

%

1

1

%

1

1

%

%

5 0-5

3 _i 0-3

2 1-2 0-2

5 _5 95 _3

2 _2 0-2

3 _2 0-3

3 2-3 0-3

1 0-i

1 0-i

4 0-4 O-3

1 _I

9max _9

12max 0-12

9-max 0-9

16max 0-16

19max 0-19

16max 0-16

4 0-4

2 0-2

0-3

0-3
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TABLE C.2

PRDCESSOR INSTRUCTIONS (Cont)

Mnemonics Half Proc.

or Clock

Full Count
Word

Int. F.P. Mere. Min.

Unit Unit BL_sy CF Buf.

Busy Busy Busy

IADDXM, ISUBXM

IADDXL, ISUSXL

IMULX

IMULv_

IMULXL

IDIVX, Ib_3DX

IDIVXM, IMODXM

IDIVXL, IMODXL

IADDD, ISUBD

ISn(C,S,N) U')

ISH(C,S,N) D(L)

IOR, IAND, IXOR, IIMP

IOI%M, IANDM, IXORM, IIMPM

IORL, IANDL, IXORL, IIMPL

INOT, IMOVE, ITOS

INOTM, IMEVEM

INOTL, IM(_/EL, ITOSL

IDL, IADL

IDMOVE

1 5 0-5

1 2 0-2

½ 17max 0-17

1 20max 0-20

1 17max 0-17

½ 32max 0-32

1 35max 0-35

1 32max 0-32

½ 2 0-2

½ 2 0-2

½ 5 0-5

% i o-1

1 4 0-4

1 1 0-1

% i 0-1

1 4 0-4

1 1 0-1

1 2 0-2

½ 2 0-2

0-3

O-3

0-3

0-3
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Mnemonics

TABLE C. 2

P_OCESSOR INSTRHCTICNS (Cont)

Half Proc.

or Clock

Full Count

Word

Int. F.P. Mem. Min.

Unit Unit Busy CF Buf.

Busy Busy Busy

IDMOVEM

IDMOVEL

IPNO

IPAK3M

IPUK3M

IPAK3F

IUPK3F

ISTORE

IDSTORE

ILT, ILE, IFT, IGE, IBIT (branch)

ILTM, ILEM, IGTM, IGEM (branch)

ILTL, ILEL_ IGTL, IGEL, IBITL
(branch)

IEQ, INE (branch)

EIQM, INEM (branch)

IEQL, INEL (branch)

IDLT, IDGT (branch)

IDEQ, IDNE (branch)

FSTOPam

1 5

1 2

½ 2

% 6

% 6

% 4

% 4

1 4

1 5

1 3

1 6

] 3

1 4

1 7

1 4

1 4

1 6

% 3

0-5

0-2

0-2

0-4

0-6

0-4 3-4

0-4 0-i

0-2

0-3

0-3

0-6

0-3

0-4

0-7

0-4

0-4

O-6

0-3 2-3

0-3

3-6

0-3

1-4

2-5

0-3

0-3

0-9
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TABLE C.2

PROCESSOR INSTRUCTIONS (Cont)

Mnemonics Half Proc. Int. F.P.
or Clock Unit Unit

Full Count Busy Busy
Word

IS_ORF24, IDSTOREM % 3 0-3

I3STOREM % 3 0-3

MSTOREM 1 4 0-4

FRREQ, _IFILL % 1

LOAD_4, LOCYd_ ½ 3 0-3

_PaM % 2

IP_M % 2 1-2

IDREM ½ 3 1-3

I3REM % 4 I-4

MREM 1 4 1-2

ITIX, ITIXL, ITIXL (branch) 1 3 0-3

IJUMP (branch) % 2 0-2

ICALL, IREq_RN, PUSH, OPO, IRETI ½ 30

(TBD)

_%IT, S%IOP, HELP ½ 4

ICALLI % i

lINT % 2 0-2

IINTL ! 2 0-2

ISMASK, !RMASK ½ 1 0-i

ISMASKL, IRMASKL 1 1 0-i

i-2
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Busy

Min.

C2 Bur.

Busy

0-9

0-6

0-3 1-8

0-i

0-12

0-2

0-2

0-3

0-4

1-4 0-4

0-4
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COORDINATOR INSTRUCTIONS

Mnemonics Half Coord Arith

or Clock Unit

Full Count Busy
Word

Mem. Min.

Busy CN Buf.

BUsl

1

CADD, (:SUB, CADDI, CSUBI,
CSH(C,S,N) (L), CAND, COR,

CIMP, CXOR, CNOT, CMOVE,
CTOS

% 1 0-1

CADDN, CSUBN, CANDN, COI_N, CIMPN, 1 4 1-4
CXORN, CNOTN, CMOVEN

CADDL, CSUBL, CADL, CDL, CANDL, 1 1 0-1

CORL, CIMPL, CXORL, CN(_,
CM(A_L, CTOSL

CMUL ½ 16max 0-16

CMULN 1 19max 3-19

CMULL 1 16max 0-16

CDIV, CMOD ½ 32max 0-32

CDIVM, CMODM 1 35max 0-35

CDIVL, CMODL 1 32max 0-32

CMOD521 ½ 4 0-4

CSTORE 1 3 0-3

CGT, OGE, CLT, CLE, CBIT (branch) 1 3 0-3

O3TN, CG_N, CLTN, CLI_, CBITN 1 6 0-6
(branch)

CGTL, CGEL, CLTL, CLEL, CBITL 1 3 0-3
(branch)

0-3

0-3

0-3

0-3

0-3
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COORDINATOR INSTR_IONS (Cont)

Mnemonics Half Coord Arith
or Clock Unit

Full Count Busy
Word

CEQ, CNE (branch) ½

CEQN, CN_ (branch) 1

CEQL, CNEL (branch) 1

CTIX, CTIXL, CTIN& (branch) 1

CHUMP (branch) ½

CCALL, CR_'I_JRN,CPUSH, CPOP, %

CRETI

CLOADEM, CLOCKEM 4

CLOAD_(L) 1

CSTOREM ½

CSTOREMN(L) 1

4

7

4

3

2

30

(_D)

13

9+

12N

3

9N--6

cI_ ½ 2

CINTL 1 2

CSMASK, CRMASK ½ 1

CSMASKL, CRMASKL 1 1

FETCHEM ½ 13

SHIFCN, SHIFCNL ½ 9

LOOP, PINT, TESTP, TESTE (branch) ½ 2

0-4

0-7

0-4

0-3

1-2

Mem. Min.

Busy CN Bur.

Busy

0-3

0-13 0-12

0-(7 13-(9 0-(9

+I2N) +I2N) +I2N)

0-3 0-7

0- 0-9N

(9N-6)

0-2

0-2

0-1

0-1

0-3 0-12

0-3 0-9

0-2
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I Mnemonics

COORDINATOR INSTRUCTIONS (Cont)

Half Coord Arith
or Clock Unit

Full Count Busy
Word

__m. Min.

Busy CN Bur.

Busy

SYNC

RDCST

HVST

BDCSTN

UBDCST, UBDCSTE

USETP, USETPE, PROC

USETPO, USETPEO

HALTP, STOPP

READP, READPM

READPM_

TIOM, TIO_, STATUS, HOST

SCIDCK, RCIf_K

½ 2 0-2

% 9 0-5

% 9 o-9

1 12 3-8

1 7+6N 0-(7

+6N)

½ 9 0-4

% n 0-4

% 15 0-15

1 15+ 0-( 15
6N +6N)

% 2 o-2

% 3
(TBD)

0-3
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APPENDIX D

RELIABILITY, AVAILABILITY, AND MAINTAINABILITY PROGRAMS

From a system engineering viewpoint, the design of a reliable and

maintainable digital computer system encompasses many interdisci-
plinary technical trade-off decisions. This appendix describes
the computer programs called DESIGN and CONFIGURE which have been

developed by the Burroughs Corporation to focus attention on

critical Reliability, Availability, and Maintainability (RAM)
design factors that have been repeatedly observed to dominate the

frequency of abnormal system interruption and the duration of

downtime in fault-tolerant computer systems. In analyzing the RAM
characteristics of the Flow Model Processor (FMP), the DESIGN

Program was used to pinpoint critical factors pertinent to the

failure, repair, and recovery processes of the FMP that require

concentrated design attention as the design progresses. The

CONFIGURE program was used to predict the performance of the
Support Processor and File Management Subsystems.

The following paragraphs describe the DESIGN and CONFIGURE pro-

grams in terms of the computer system models applied to the FMP
and the NASF and the computations performed. Salient theoretical

and practical assumptions associated with the mathematical model

utilized and definitions of all input parameters and computed

results are discussed to aid in understanding the analysis
performed and interpreting computed results. Definitions of terms

used in this appendix are presented in Section D.4.

D.I COMPUTER SYSTEM MODEL

Traditionally, in mathematical analyses of repairable redundant

systems, it has been common to assume that system failure occurs
due to the depletion of hardware resources when an active hardware

element fails before the previously active redund@nt hardware
element(s) is repaired. Although this conventional failure and

repair cycle type model has been applied successfully to investi-

gate the hardware availability aspects of certain types of redun-

dant systems, it has been of little practical value in predicting

the operational RAM characteristics of fault-tolerant computer
systems in which hardware elements operate under software control.

In an operational environment, the failure of a computer system to

operate continuously frequently occurs for reasons other than the

depletion of hardware resources due to permanent type failures

which require repair actions. Common causes of computer system
interruption and downtime include intermittent failures and the

inability to automatically recover from certain single critical

hardware failures. Since an accurate reliability estimate must

take into account all applicable sources of system interruption
and downtime, to the extent possible, Programs DESIGN and
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CONFIGURE have been developed to treat overall computer system

behavior in terms of hardware subsystems operation under software

control as depicted in the availability block diagram of Figure

D.I. From a reliability point of view, each of the critical

subsystems in Figure D.I must operate successfully in order

sustain proper system operation.

As shown in Figure D.I, any number of independent hardware sub-

systems operating under software control can be defined to take

into account as many functions as required. The subsystem model

is based on the premise that if a redundant hardware element

fails, the particular subsystem involved may be interrupted for a

short time to effect reconfiguration. After a short delay, the

subsystem is restored to operation, and continues to operate while

the failed hardware element is being repaired. However, if more

than the specified allowable number of hardware elements are down

for repair or if a critical hardware element has failed, then the

subsystem is down until the appropriate repair has been effected.

As shown in Figure D.1, the failure of any subsystem breaks the

critical success path, causing the system to fail.

SUI3S¥STEM 1 SUBSYSTEM M

ELEMENT ELEMENT

1 1

HARDWARE HARDWARE

ELEMENT ELEMENT

IN I SOURCE L ,
N ]INTERRUPTION[ N

k R1/N1 . RM/NM

sYSTEM

J

(HARDWARE OPERATING UNDER SOFTWARE CONTROL)

Figure D.I. Computer System Availability

Block Diagram
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Computation of Mean Up Time (MUT), Mean Down Time (MDT), and

Availability for each of the specified critical elements and

subsystems is performed using the mathematical model discussed in

the following paragraph. System MUT, MDT, and Availability are

then computed based on the successful operation of all subsystems
using conventional methods. The assumption associated with this

system decomposition technique requires only that the system be

composed of independent subsystems, each of which can be regarded
as having two possible outputs (working and failed) and that it is

possible to identify a certain set of subsystem states as "working

states" and the remaining states as "failed states".

D.2 MATHEMATICAL MODEL FOR THE DESIGN PROGRAM

The mathematical model employed in the DESIGN Program is a dis-
crete-state continuous-time model called a Markov process. As

with any type of Mark or model, the underlying assumption of this

process is that the transition probability Pij from any state i to
any state j depends only on the states of i and j and is
completely independent of all past states except the last one.

The transition probabilities must obey the following two rules:

- The probability of a transition in time _t from one state
to another is given by Z(t) _ t where Z(t) is the hazard

associated with the two states in question. If all Zi(t)'s
are constant, as assumed herein, the model is called

homogeneous.

- The probabilities of more than one transition in time _t
are infinitesimals of higher order and can be neglected.

These properties and assumptions are quite widely accepted as

being appropriate to modeling the failure and repair cycles of

computer systems.

D.2.1 Markov Graphs

Figure D.2 is a Markov graph dipicting the transitions between

states for each of the subsystems defined in the Computer System

availability Block Diagram of Figure D.I. In Figure D.2, shaded

states represent subsystem failure, and consequently system fail-

ure since all subsystems are required to be functioning properly
to achieve system success.

For hardware subsystems operating under software control, the

Markov Graph is quite complex. Therefore, the simplified Markov
Graph shown in Figure D.3 will be described first as an intro-

duction to considering the chain pertaining to the depletion of

redundancy shown in Figure D.3.
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D.2.2 Conventional Failure and Repair Cycle Model

The Markov Graph shown in Figure D.3 is typical of conventional

failure and repair cycle models for repairable redundant systems

where the mechanism for removing failed hardware elements from the

system and replacing repaired hardware elements are tacitly as-

sumed to be perfect. As shown in Figure D.3 the number of states

in the Markov Graph is a variable since each subsystem may contain

0, i, 2, 3 or more active redundant hardware devices. If, for

instance, a subsystem contains two active identical devices (n),

only one of which is required to be operating for subsystem suc-

cess (R), State L+I becomes State 3 (a DOWN state) which termin-

ates the chain since L+I=N-R+2, or L=N-R+I.

For the subsystem with one redundant device, it is common to

hypothesize that at least two device failures must occur before a

subsystem failure can occur. Normally, the Mean Time to Repair

(MTTR) of a device is very short compared with the Mean Time

Between Failure3 (MTBF); therefore, many allowable device failures

are expected to occur before a subsystem failure occurs due to a

second device failure during the time when a failed device is

being repaired. Thus, on the surface it appears that tremendous

gains are in store if sufficient redundancy is provided for criti-

cal devices in each subsystem since the probability of a second

failure during a repai_ cycle is a rare event.

°

%

_--b.

i

[

: ;k

NX (N-11X (N-2IX (N-L÷|)_

O 1 2 3 (N-R÷2)
FAILED FA|LEO FAILED FAILED FAILED

DEVICES DEVICE DEVICES DEVICES DEVICES

R: NUMBER OF DEVICES REQUIRED TO BE OPERATING FOR SUCCESS

N: NUMBER OF DEVICES AVAILABLE

_: DEVICE FAILURE RATE

/J: DEVICE REPAIR RATE

Figure D.3. Simplified Markov Graph for Depletion of Redundancy
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As shown in Figure D.3, "N" subsystem devices are operating suc-

cessfully in State i. Therefore, the rate at which device fail-

ures occur is "N" times the failure rate (_) of a single device,

since all devices are required to be identical. In State 2 one
device is failed and either of the following two transitions may

occur;

- The failed device may be repaired, at rate_, before a
second failure occurs and placed back into service,

returning the subsystem to State i.

- A second failure may occur before the repair is complete,

further degrading the subsystem to State 3.

In State 2, failures occur at rate (N-I) times _since one device

is already being repaired. The rate at which failures occur in

subsequent states diminishes as shown in Figure D.3 until the

subsystem contains an inadequate number of hardware devices to

sustain acceptable functional operation. Once the subsystem is in
a failed state, it is assumed that operations cease and no addit-

ional failures occur.

Since program DESIGN is intended to investigate system design

potential, an ideal support environment is assumed in which

replacement spares, trained repairmen, documentation, test equip-
ment, etc., are all immediately available when required. As shown

in Figure D.3 the rate at which repairs are enacted when one

device is failed is_, and the rate at which repairs are enacted
when more than one device is failed is 2_ The underlying
assumptions for the coefficients of_are that only one repairman

will be assigned to a failed device'and that the maximum number of

repairmen available for assignment to a failed subsystem is two.

Thus, if one hardware device fails, one repairman goes to work;

only when two or more devices require repair are both available
repairmen busy. Normally, the probabilities associated with

degradation to states where more than one or two devices require

service simultaneously are very small.

D.2.3 Desi@n Model for Hardware Elements Operatin@ Under Software
Control

There are several critical factors involved in adding redundant

devices in computer subsystems which tend to severely reduce the

potential benefits of hardware redundancy. First, the mechanism
for automatically detecting, isolating, and switching failed
devices out of the system and adding repaired devices back into

the system is a complex interdisciplinary design problem. Also,
clocks, controllers, busses and interface circuitry between hard-

ware devices tend to contain Single Point Failure Modes (SPFM's)

which cause subsystem failures even though the subsystem is not

depleted of sufficient hardware resources. Unlike some types of
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systems, both permanent type failures which require a repair

action and intermittent type failures which disappear before being

isolated must carefully be considered in designing computer
systems since either can cause abnormal subsystem interruption.

For continuous operation, the problem of performing scheduled

maintenance actions becomes an important consideration, and safe-

guards are necessary to prevent accidental system interruption

when unscheduled maintenance actions are being performed on failed

devices which cannot be physically disconnected from the system.

Referring to the Markov Graph for hardware operating under soft-

ware control in Figure D.2, it can be seen that the center portion

labeled "Depletion of Redundancy" corresponds closely to the
previously discussed simplified Markov Graph. As before, the

number of states is a variable depending upon how many redundant

devices are provided in the subsystem. Failure states for perman-
ent and intermittent type failures related to the recovery process

and SPFM's are organized in line with the labels on the right-hand

side of Figure D.2. State 5L+I in Figure D.2 provides for
considering scheduled maintenance actions in systems where

continuous operation is desired, and consideration of maintenance

errors during unschedul_d maintenance actions is factored into

states where repair actions are being performed while the system

is still operating.

Considering first only the depletion of redundancy, the Markov

Graph for hardware subsystems operating under software control is
based on the premise that if a redundant hardware device fails,

the particular subsystem involved may be interrupted for a negli-
gible time to effect automatic reconfiguration. After automatic-

ally decommitting the failed device, the subsystem is immediately

restored to operation, and the failed hardware device is then

repaired. When repair of the failed hardware device is completed,

it is recommitted to the subsystem without any discernable inter-
ruption in subsystem service. However, if more than the specified

allowable number of hardware devices are down for repair, or if a

critical hardware device has failed, then the subsystem is down
until the appropriate repair has been effected.

As previously discussed, the five primary sources of system inter-

ruption and downtime diagrammed in Figure D.I for hardware operat-
ing under software control are:

- Depletion of Adequate Resources

- Unsuccessful Recovery (Intermittent)
- Unsuccessful Recovery (Permanent)

- Single Point Failure Modes (Intermittent)

- Single Point Failure Modes (Permanent)
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Starting in State i, "N" identical, independent subsystemdevices
are operating successfully. Therefore, the rate at which failures
occur (either permanent,_D, or intermittent, AI) is N times the
failure rate of a single _evice. If no redundancyis provided,
any failure causes a subsystemfailure. With redundancy, when a

failure occurs in State I, any of the following transitions may
occur.

- If the failure is a permanent type failure related to an

SPFM, no recovery is possible and there _s a transition to

State 2L+I, which requires a repair action to reestablish

subsystem operation. The rate at which SPFM repairs are

enacted is_p C. When the repair is completed in State
2L+I, there is a transition back to State I, where the

subsystem is again operating successfully with all hardware

devices present.

- If the failure is an intermittent type failure to an SPFM,
no recovery is possible and there is a transition to State

4L+I. Since intermittent failures do not require a repair

action, the device is returned to the subsystem and there
is a transition from State 4L+I back to State 1 at a rate

, which is the device manual recovery rate including the

ime required for the intermittent failure to disappear.

- If the failure is a permanent type failure and the auto-
matic recovery system is successful, there is a transition

to State 2, in which case the subsystem continues to

operate with one device decommitted from the subsystem. If
no additional events occur before the failed device is

repaired and recommitted to the subsystem, there is a trans-

ition back to State i. These transitions occur at rate/_p,
which is the device repair rate for permanent type fail-
ures. Additional events in State 2 will be discussed

subsequently.

- If the failure is a permanent type failure and the auto-
matic recovery system is unsuccessful, there is a

transition to State L+2. In State L+2, manual recovery

procedures are enacted at rate_ D and there is a transition
to State 2 where the subsystem is operating with one device
decommitted from the subsystem. As indicated above, State

2 will be discussed subsequently.

- If the failure is an intermittent type failure and the auto-

matic recovery system is unsuccessful, there is a

transition to State 3L+I. Again, since intermittent type
failures do not require a repair action, the device is

returned to the subsystem and there is a transition back to
State 1 at rate

rD
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- For systems which are required to operate Cohhinuously,

State 1 provides the best opportunity for performing any

required scheduled maintenance on subsystem hardware devices.

Therefore, scheduled maintenance is restricted to being

performed only when all subsystem hardware devices are oper-
ating successfully. When a hardware device is decommitted

for scheduled maintenance, there is a transition to State

5L+I where the subsystem is operating successfully, but

depleted of one of its hardware resources. If the scheduled

maintenance is completed (rate.M) and returned to the sub-

system before an event occurs, there is a transition back to
State i. However, if an event occurs before the scheduled

maintenance action is completed any of the following may
occur :

- To State of 2L+2 if the event is related to permanent

type SPFM (Subsystem DOWN)

- TO State L+3 if the event is related to a permanent type

failure and automatic recovery is unsuccessful (Sub-

system DOWN)

- To State 3 if the event is related to a permanent type

failure and automatic recovery is successful (Subsystem

UP) provided the subsystem contains two or more redun-
dant devices, otherwise, State 3 is a DOWN state.

In State 2, subsystems with one or more redundant devices are

operating successfully with one failed device decommitted from the

subsystem. Therefore, the rate at which events related to the
number of hardware devices occur diminishes to a multiplier of

N-I. The subsystem operates essentially as described for State 1

except that the failed device being repaired may be a hazard to

subsystem operation. If the failed device is not _isconnected

from the subsystem and safeguards are inadequate, a maintenance
error could occur which brings the subsystem down. _n State 2,
the transition from state 2 to to State L+2 accounts for this

potential mode. As shown, the rate at which catastrophic
maintenance errors occur is designated as _.

D.3 MATHEMATICAL MODEL FOR THE CONFIGURE PROGRAM

I

In contrast to the traditional two-state failure and repair cycle

reliability model, the CONFIGURE program employs the three-state

model shown in Figure D.4 which enables the effects of m_nual

recovery from non-permanent failures and errors to be taken into
consideration. This separation of repair and nonrepair events is

the key to modeling the effects of intermittent failures, software

errors, maintenance errors, unisolated events, and unsucce:.:sful

automatic recoveries in close approximation to the physical system

being analyzed.

D-9



9

o.

As shown in Figure D.4, when an element fails, a transition occurs
from the UP state into either the REPAIR state or the INTERRUPT

state. The rate at which these transitions occur is the reci-

procal of the element Mean Up Time (I/MUT). Variable F1 defines
the fraction of failures or errors which cause a transition direct-

ly into the INTERRUPT state. Hence, (I-F1) is the fraction of
failures that cause a transition directly into the INTERRUPT

state. Hence, (I-F1) is the fraction of failures that cause a

transition directly into the REPAIR state.

Once an element is in the REPAIR state, the only possible transi-

tion is to the UP state. The rate at which this transition occurs

is, of course, the reciprocal of the element Mean Repair Time

(I/MRT). When an element is in the INTERRUPT state, transitions
to either the REPAIR state or the UP state can occur. Variable F2

is the fraction of total interrupt events which go into the REPAIR

state rather than going directly into the UP state, and the reci-

procal of the Mean Interrupt Time (1/MINT) is the rate at which
these transitions occur.

For hardware subsystems, the subsystem is considered to be oper-

ating successfully if every element is in the UP state, and the
subsystem is considered to be down if any element causes a transi-
tion to the INTERRUPT state. The subsystem can be operating

succesfully with some of the hardware elements in the REPAIR
state. This depends on the definition of how many hardware ele-

ments of the subsystem can be in the REPAIR state with the sub-

system still capable of performing its intended runcti,m. For

critical subsystems, the subsystem is considered to be opera_

ing successfully only when no repair action or interruption are in
process. Thus. for unisolated events, operator errors, and main-

tenance errors which require no repai_ action, transitions From

th{: UP state go directly [n£L the INTERRUPT state. In this cm;e,

restoration of system cperat[on is accomplished by a manual recov-

ery action. Software errors which disappear follow this sa_e

pattern. However; if a software patch is required, the repair
state becomes involved in a manner analogous to the situation

discussed with respect to permanent type hardware failures.

The summary table provided below the transition diagram outlines

conditions in states S I, S 2, and S 3, and defines the type of

recovery required for the specified conditions.

The critical assumptions associated with the derivation of the

state probability equations shown in Figure D.4 are:

- Failure and repair hazards are assumed to be constant,

which is equivalent to stating that individual elements are
assumed to fail in accordance with the negative exponential

distribution, and the times to repair are also exponentially
distributed.
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- Each subsystem element is completely independent of other

elements in the subsystem.

- Each subsystem element is identical in any given
subsystem.

D.4 DEFINITIONS

The definitions summarized below are provided for reference to aid
in interpreting computed results.

Do 4.1 _uts

The following definitions pertain to Program inputs. Each defi-

nition describes a program variable. The symbol used is given in
brackets following the definitions. In cases where these symbols

are reciprocals of the various transition rates discussed, an

equivalence relationship is given which correlates the symbols in
Figure D.2 with the input data symbols.

- DEVICES REQUIRED. Minimum number of identical subsystem
devices required to be working for acceptable subsystem
operation (R).

- DEVICES AVAILABLE. Number of identical subsystem devices
provisioned for active subsystem operation (N).

- TIME BETWEEN FAILURES (PERMA_°_NT). Time interval from an

instant when a repairable device is working to the next

intermittent type device failure which requires a manual

recovery action (mean: MTBF(P) = I/_p).

- TIME BETWEEN FAILURES (INTERMITTENT). Time interval from
an instant when a repairable device is working to the next

intermittent type device failure which requires a manual

recovery action (mean: MTBF(I) = I/_I).

- SINGLE POINT FAILURES*. Percentage of total failures in a

redundant subsystem configuration which result in subsystem

failures (permanent or intermittent) even though an ade-
quate number of devizes are working (SPFM = P).

- DEVICE REPAIR TIME. Time interval from an instant when

repair of a device is initiated to readiness as an active

subsystem device, excluding waiting times for repairmen,

spares, etc. (mean: DRT = i//_p ).

- SINGLE POINT REPAIR TIME*. Time interval from an instant

when repair of a single point failure is initiated to

readiness of associated subsystem, excluding waiting times

for repairmen, spares, etc. (mean: SRT = I/_pc).
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- RECOVERY EFFICIENCY (PERMANENT). Percentage of automatic

recovery actions from permanent type failures which are

completed successfully (without manual intervention) within

a negligible period of time (RE(P) =_p).

- RECOVERY EFFICIENCY (INTERMITTENT). Percentage of auto-

matic recovery---_tions from intermittent type failures
which are completed successfully (without manual inter-

vention) within a negligible period of time (RE(I) -_I).

- DEVICE MANUAL RECOVERY TIME. Time interval from an instant

when a system failure related to an unsuccessful automatic

recovery from a device failure (permanent or intermittent)

occurs until the system is restored to normal operation via

manual recovery procedures (mean: DMRT = i/_p).

- TIME BETWEEN MAINTENANCE ERRORS. Time interval from an
m

instant when a system recovery related to a maintenance

e!:ror is completed until the next occurrance of a main-

tenance error which causes system interruption (mean: MTBME

= iI_').

- TIME BETWEEN PREVENTIVE MAINTENANCE ACTIONS. Time inter-

val from an instant when a device has been recommitted to

active operation following a scheduled preventive mainten-
ance action unti the next scheduled preventive maintenance

action is due (mean: MTBPM = I/_M).

- TIME TO PERFORM PREVENTIVE MAINTENANCE. Time interval from

an instant when a device is decommitted from active oper-

ation (mean: MTTPM = I/_M).

- SYSTEM MANUAL RECOVERY TIME. Time interval from an instant

when a system failure related to a transient software or

operator error occurs until the system is restored to

normal operation via manual recovery procedures (mean:

SMRT- ii¥s).

* This variable is provded for convenience in preparing inita!

estimtes; if desired, SPFM's can be modeled as a single non-

redundant device in series with the associated subsystem.
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D.4.2 Program Outputs

The following six useful measures of system performance are fre-

quently encountered in modeling and analyzing repairable, redun-
dant system configuratlons:

- Availability

- Mean Up Time (MUT)

- Mean Down Time (MDT)

- Mean Cycle Time (MCT)

- Mean Time to First Failure (MTFF)

- Mean Ti.me to Failure (MTTF)

Although the terminology given above is common in the field of

reliability, the precise meaning of the terms can easily become
confused. The following definitions of these terms appear in the
paper by Buzacott [i]. These definitions have been extracted

almost directly since the unified presentation in the Buzacott

paper tends to relieve much of the misunderstanding encountered
regarding the various mean times of interest and the concept of

point and interval availability in treating repairable, redundant

systems. Only the MUT, MDT, and interval availability definitions

are directly applicable to the outputs of the DESIGN program. The
remaining definitions are provided for reference to further clar-

ify the precise meanings of MUT, MDT, and interval availability.

D.4.2.1 System Availability

Let SYSTEM INITIATION be the instant when system operation begins

for the first time. The system and all of its components are

assumed to be working correctly and not to be subject to wearout
during the time interval of interest.

Let SYSTEM FAILURE be the instant when the system changes from
working to failed. Let SYSTEM REPAIR be the instant when the

system changes from failed to working.

The first group of definitions applies to the concept of avail-

ability. POINT AVAILABILITY (at time t): The probability that

the system is working at time t from system initiation. It is

assumed that at time t no information is available about system

failures and system repairs during the time interval (0, t) (sym-

bol Pw(t)) INTERVAL AVAILABILITY (at time t): The expected
proportion of the time interval from system initiation (time 0) to

time t during which the system is working. (symbol I(t)). Hence

t
/.

t4 w
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It is assumed in calculating all quantities except the mean of the

time to first failure that the system has been operating long

enough for initial effects to have died away; i.e., statistical
equilibrium (or the asymptotic behavior) has been reached. The

mean :ycle time is then obtained from the ratio of the length of

some long time interval to the number of failures N in that time

interval, i.e.,

and

lim f I

MU__/.T
AV = Availability = MCT

Asymptotically, for large t, it can be shown that point availa-
bility is numerically the same as interval availability. Thus

A = t-_llm)Pw(t)l= t-_,<=llmIf(t) I

This steady-state availability is the availability calculated
herein.

D.4.2.2 System Time Interval Between Failures

The next group of definitions refer to the concepts related to the
time interval between failures. Each definition defines a random

variable. The symbol that will be used herein for the mean is
given in parentheses following the definition.

- UP TIME. Time interval from system repair to next system
f&ilure (mean: MUT).

- DOWN TIME. Time interval from system failure to next

system repair (mean: MDT).

- CYCLE TIME. Time interval from one system failure to the

next system failure. The cycle time is the sum of an Up
Time and a Down Time (mean: MCT).

- TIME TO FIRST FAILURE.

at{on (mean: MTTF).

Time interval from system initi-
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The first three time intervals, up time, down time, and cycle time

apply to a system that is alternately working, failed, working,

failed, and so on. The system is said to be repaired when suffic-

ient, but not necessarily all components are repaired so that the

system is working.
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APPENDIXE
FMPRELIABILITY DATA BASE

This Appendix presents the predicted results of the MTBF's and

failure rates for the elements of the FMP system (see figures E.I,
E.2, and E.3.). Three sets of results are shown, the difference

being the failure rate and SECDED improvement factors used for the
LSI memory circuits.

The form of these predictions is a hierarchical structure. Each

FMP element is listed as a level 01: the parts constituting the

elements are listed as level 02. For a better defined system, the

number of levels may increase, showing the assemblies that make up
an element as level 02, the subassemblies as level 03 and the

components in the subassemblies as level 04, etc.

For each item listed in an element, a part number and description

are provided. For the FMP, hypothetical part numbers are used.

In the case of the I.C.'s, typical parts in the generic family

assumed have been selected to represent all the I.C's used in the
various logic functions.

The quantity of each part in the structured listing is shown. The

quantity is multiplied by the quantity of the encompassing level

item. For example, where a quantity of 2 of an assembly or

element is listed and a quantity of 3 of a particular part in an
assembly or element is required, the quantity listed for this part
will be 6.

Failure rates for each individual part and the total quantity of

that part are shown and expressed in failures per million hours

(FPMH). The aggregate of these failures are used to predict the
failure rate of the element and the mean time between failures

(MTBF) in hours. The failure rates used except for the LSI memo-
ries have been developed from the guidelines in MIL HDBK 217B.

While not used in this study, columns for the spares confidence
level are shown. When used, these data indicate the maximum

number of repair actions (and therefore spare elements) required

at a specific confidence level for specified number of years and
duty cycles.
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APPENDIX F
SYSTF_ THROUGHPUT AND UTILIZATION ANALYSIS

F.I SUMMARY

The study of the feasibility of the NASF would be incomplete if

only the high-performance computational engine, called the Flow
Model Processor (FMP), were considered. The facility must have

sufficient support equipment so that the FMP will not be idle due

to bottlenecks elsewhere in the facility.

Chapter 2 of this report introduced the expected operational
environment. F_c..,_e F.I shows the organization of the facility at

the level cons{dered in this initial study of the facility.

Reference can ,e made back to Figures 2.1 and 2.2 to understand

the level of tnis model. In particular, analysis to this point
does nob include the structure of the data communications, proces-

sing an l terminals local to the users. All of those capabilities

are lumi_ed onder the term "Users".

Since dra t c_pies of the system-level operational scenarios were

not available until late in the study, some of the system-level
analysis ovi,:ineily planned has not been completed. The analysis,

desct,bed in mo_e detail below, specifically considers the loading

of th_ Fir, ;_del Processor, the File System and the Support
Proc_,_sor The data transfer requirements between each of these

major system co_,_onents and to the Users are also considered.

The analysis shows that the system proposed during the Preliminary

Study [I, 2] would be inadequate to support the operational scen-

arios provided during this feasibility study. In particular, the
support _rocessor would have been a bottleneck as far as comp-

utational capability is concerned and the data transfer require-
ments to and from the support processor system were underestimated

originally. Part of the excess loading of the support processor

system was alleviated near the start of this study when the deci-

sion was made tc consider the feasibility of a system where file
management was a function supported by the file system itself

rather than by the Support Processor. _,is analysis has shown
that suppor_ of the major formatting requirements for both hard-

copy printers and, most especially, for Con_uter-Output to Micro-

film (COM) should be removed from the Support Processor to either

a peripP_ral-support processor or perhaps to the FMP itself.

F.2 MODEL AND ASSUMPTIONS USED FOR ANALYSIS

Figure F.I shows the general model used for this analysis. The

analysis performed was an operational-type analysis based on NASF

operational scenarios included in the original NASF Utilization

document [3] as updated during subsequent discussions.

F-I
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The data presented in the scenario was in terms of Job classifica-

tions. The following cases were used to represent the various

types of use encountered during a "typical" NASF day.

I.A Method and Code Development using scaled down problems.

I.B Grid Modification.

2.A Larger code development as well as grid and result array

generation.

2.B Grid Generation.

3. Simpler simulations on a large grid (such as inviscid flows
with bounda[d layer correction).

o Typical viscous, steady flow simulations used for design,

resulting in a single solution.

5. Viscous, steady flow simulations requiring several solutions,

such as design optimizations.

6. Unsteady viscous flow simulations fo_ design applications.

7. Large _luid physics research simulations.

These cases correspond to the column headings in Table F.I.

Regardless of case, each user has a sequence of tasks to be per-
formed in order to complete his job. These tasks were generally

identified in four major areas:

A. Simulation Program Input
B. Simulation Input Data Preparation

C. Simulation (execution)

D. Output of Simulation Results

The actual detailed tasks defined in the utilization document [3]

were:

(A. Simulation Program Input)

i. Source Module Generation is the task of inputting

_slm_ion source programs into the system.

2. Source Module Editing is the task of editing source

modules as required by input or compile errors.

3. Source Module Compilation is the task of compiling
source mo--_s of s{mulation programs into object

programs.
4. Linking . is the task of collecting all the object ,,odules

which are required for a simulation and cleaning up

incomplete address binding prior to loading into the
FMP for execution.

F-3
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(B. Simulation Input Data Preparation)

5. Configuration Generation is the task where surface coordi-
nate tables are input and surface patches are computed.
The model assumed that, in some cases, the FMP could

compute the surface patch coefficients but that the
processor local to the graphics stations could also

perform this computation.

6. Surface Grid Generation (Not separately modelled but

considere_ part of Task 7).
7. Flow Field Grid Generation is the task which computes the

c-_d_ates of t-he grid to be used during £1ow-field

computations on the FMP. The model assumed that this
task would be executed on the FMP when operator verifi-

cation of the resulting grid was not necessary. Other-
wise, it would be executed on the Support Processor in

order to have prompt display of results to the operato_ _.

8. Input Gathering is the task which is used to specify the
parameters of a particular simulation run and to begin
staging data to the FMP.

9. FMP Execution is the task which runs a job on the FMP.

i0. Preselected Data Display is the task which outputs data
Which had been organized during FMP execution to line

printers, to graphics terminals and to microfilm
printers.

ii. Interactive Post-Execute Display is the task which

supports the selective extraction of data from the FMP

output files. The data extracted would be requested by
and displayed to the user at a graphics console.

12. Debugging Display is the task of formatting and display-
ing (in some appropriate manner) that information saved

by the FMP when a run aborts.

13. Restart Dum_s is a subtask of Task 9 and involves taking
a snapshot of the status of a simulation run to be used
as a restart or initialization point on a later run.

Table F.I summarizes the important data for evaluated the model
studied.

L
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In addition to the information provided by NASA, it was necessary

to make some assumptions during the course of the analysis. These

assumptions were based in part on experience and in part on judge-
ment. Table F.2 summarizes these assumptions.

TABLE _.2

Significant Assumptions

0.2

40

5O

0.2

4000

8

0.25

0.i

0.5

Fraction of Users who use the Support Processor to do data
entry & editing

Average length (chars) of source statements

Average length (chars) of control messages

Fraction of a module fixed or modified on each edit

Average additional compiler output (characters) over

and above the source statements per module

Number of words of object program per line of source

Fraction of modules with bugs which are waiting change

and which will be batched as far as BINDING (linking)

Fraction of edited program codes which must be completely

bound or linked (others will be replacement bound)

Fraction of solution parameters (of an earlier run) mod-

ified to setup the next run

Number of characters out of FORMATTER for each word in

(used to format printouts & COM)

Number of 8 bit characters per word - (6x8 = 48 bits)

1.25 x I0" Max size of archive (characters)

.20 Fraction of file access from active data

.70 Fraction of file access from long-term data

.i0 Fraction of file access from archive data
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F.3 ANALYSIS

The analysis first defined the sequence of events required to
implement each task. The relationship of system resources during
each task was then charted basedon an approach suggestedby Prof.
Anatol Holt (Boston University). These charts or diagrams are
intended to separate spatial relationships and temporal relation-
ships. Figure F.2 shows the resource-relationship charts for
Tasks 1 through 5 and 7 respectively. The interpretation of these
charts is straight-forward. The various NASFresources, sometimes
including equipm_.ntlocal to the users, are shown left to right
across the chart. The sequenceof events required to complete a
task is represented from the top to the bottom of the chart. For
example, the first chart of Figure F.2 is for Task 1 - Source
ModuleGeneration. The sequenceof events shownis:

Create File
Enter Records
SaveFile
Create File
SaveWorking File

The first Create File event involves the user, his terminal, data
commcontrols, the operating system on the support processor and
working files (in the support processor). Thus, the system
resources which interact to implement each event of the task are
delineated. The secondevent, Enter Records, involves a bulk move
of data. This type of interaction is shown with the curved
corners. This notation allows the natural flow of data, here from
the user to the working file, to be shownclearly. Each resource
involved in an event commits something of that resource to the
event, whether it be space (storage) or time. Thesecommittments
were the point of the analysis performed. Note that the charts
showncontain more information than was utilized in the analysis
to date. In particular, the processing capabilities and communi-
cations local to a user were not studied yet.

After the resource-relationship charts were prepared, they were

used as templates to prepare a straight-forward program which

would collect the operational scenario data in the manner de-

scribed by the charts in order to generate the results. Thus the
charts could be used to identify how many control messages moved
and what data transferred between elements of the model. The NASA

provided data was used to identify the average frequency of a
task,the amount of data involved, and the processing time

required.
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The program developed to support the analysis allowed spec-
ification of the parameters of the support processor. Since the

number of CPU's needed as part of the support processor system was

of interest, the capabilities of a particular single processor

were defined. The analysis then showed the support processor

loading in terms of that one processor. From that analysis, the
number of processors required could be determined. For example,

if the average load was determined to be 1.6 processor-hours for

each hour, then at least two processors are required.

Table F.3 summarizes the characteristics of three support proces-

sors considered during the analysis. The processors are identi-
fied "A", "B", and "C". This form of identification was chosen

since none of the data has been completely verified on any proces-
sor. In general, the processors are characterized as

A B7700
B B7800

C Future Processor

The data concerning editing, compiling, and formatting on proces-

sor A is based on benchmarks run on a mix of FORTRAN programs.

The other values are estimates based on best knowledge and judg-
ment.

In addition, where it seemed appropriate during the evaluation,

some modifications were made to the NASA supplied operational
scenarios. In particular, the anlaysis was performed for some

cases without the COM output (Task 10C) in an attempt to identify

the impact of that large amount of output.

The analyzer currently generates results in terms of daily average

loads. Hand reduction of the results from the analyzer is used to
generate hourly average loads.

F.4 RESULTS

Before considering the results, a WARNING must be stated. The

analysis to date only considers average data rate and processor

time requirements. This would only be true under conditions of

optimum system balance and concurrency. Factors which are needed

to predict the peak rates which an eventual design must consider
have not been included.

The analysis considered three major factors of the NASF system
model. First, the data transfer requirements for transfers

between each of the components of the model in Figure F-I were

determined. Then the amount of file level activity was deter-

mined in order to estimate the processor required to support the
file system. Finally, an amount of Support Processor and FMP

processing time was determined using the assumptions previously
stated.

F-35

zh



TABLE F.3

SUPPORT PROCESSOR CHARACTERIZATION

...................................................... _. A B

Edit Time (Sec/Stmt) i .01 .0067

Compile Time (See/Stmt) ..................... ii-007 I .0047

.Compile overhea d (Sec/Modul-e)-- " -i!'.l._:--..:i_i:O:i_

Linking Time (Sec/Object Word) J .0007 .0 7
T

Linking Overhead (Sec/Code) | .01 .0067

n

C
I .........

i .001

.001

.013

Grid Generation Rate(Sec/Grid-Element)

Operating System overhead (Sec/Task) 0.0 I .067

" i" tt d [....._- 0006 ..........0004

Formatting Rate (Sec/Word Forma e ) IO. i "
........................ m ....

Output Selection Rate (Sec/Point |0.01 .0067

Selected) _...................

.0001

.001

.001 .00067 .0001

.0133

.0001

;0oi3.....
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F.4.1 Processor Loadinq

Table F.3 summarized the basic characteristics of the processors

considered in this analysis. The data in this table concerning

output formatting is based on the normal interpretive execution of

a formatter package which is driven by the FORMAT statements. One

of the major reasons such a system is interpretive is the possibil-

ity of variable format statements. However, most of the applica-

tions observed (both the aero and weather codes among others) have

rather straight-forward, fixed formatting. The improvement in

formatting time that could occur if the formatter was compiled and

executed per the statements given rather than interpreted was

assumed to be a factor of 5. Each of the processor of Table F.3

were considered under both the standard scenario and under a

scenario with no COM activity (no Task 10C). In addition, all

cases were studied with both the existing means of formating and

with the hypothesized improvements. Table F.4 summarizes the

results in terms of support processor loading.

Note that processor "B" seem_ to be committed to 9.5 CPU hours per

hour when the standard scenario (interpretive formatting and COM

output) is considered. A i0 processor system would satisfy such a

requirement assuming a better than optimum multiprocessing system.

If the COM formatting task is off-loaded, then only .88 CPU hour/

hour are committed.

i

Now consider how this load is distributed through the operational

day. Figure F.3 shows a distribution of jobs over the day. This

distribution is slightly simplified from the scenario given. In

this case, 22 hours of operations were assumed. The loading shown

is such that no workload case which represents long job overlaps

with a work-load case which represents short jobs. When this

distribution of jobs is assumed, the average SPS processor loading

per sh_ft can be determined. Figure F.4 shows this evaluation for

processor B with no COM formatting.

Figure F.4 shows the same schedule of job execution as Figure F.3.

The columns on the right side of the figure show the total CPU

load determined for each case (output of the analyzer). The load

for each case was then averaged over the shift in which it is

scheduled to determine the average CPU loading over the shift.

The loading is shown a CPU-hours per hour. Note that in Table

F.4, .88 CPU-hours per hour is the average load over a day. How-

ever, Figure F.4 shows that when the load is distributed by shift,

the peak load is 1.64 CPU-hours per hour.

Even this rate is optimistic since the actual loading of an inter-

active system is not uniformly distributed across the day. Load-

ing will tend to have peaks and valleys. If there is a vari-

ation of 30% from the average, then the peak rate would be 2.13

processor - hours/hour. A trade-off between respons_,-time and

system complexity and cost must now be considered, l_h, limiting

the system to two processors of this sort, these proce_;sors would

be busy most of the time, depending on load peaks which are not

under the control of the operations staff.
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Daily Average:

Table F.4

Support Processing CPU Hours/Hour

%

Scenario

.....P ROCESSORi_ FO_'ATTING .......... l"'With 'COM

] Interpretive
A i Direct Execute

Interpretive 9.5
Direct Execute 3.3B

l

Interpretive
C Direct Execute

................................... L-.

14.2

3.7

2.8

.7

Without COM

1.31

' 1.12

m

.88
' .76
M

.19
, .15

i .......
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The analysis described above is shown in Figure F.5 for processor

"C" (a future processor). The case shown includes the COM output
load and assumes the improved formatting rate. The analysis of

loading due to COM formatting is an approximation unfortunately.
The actual use planned is to produce graphics images on the COM

device. A sequence of many frames would become a movie showing

the dynamics of a model. Since no information concerning graphics

formatting was available at the time, the approximation was made

that COM formatting would be the same magnitude of task as format-
ting printed alphanumeric printout. This approximation may be

somewhat optimisic.

Figure F.5 shows that peak CPU loads on the support processor
occur during second and third shift. Note that the case shown in

Figure F.4 has the amin load during prime-shift. The difference

is the COM formatting which peaks in Cases 6 and 7 (see Task 10C
in Table F.I). The loading shown in Figure F.5 indicates addit-

ional processor time available during the prime shift (8 am EST to

5 pm PST).

One variation of the scenario was tested to see the impact on

support processor loading. The variation was to change the frac-
tion of editing done on the support processor from 0.2 to 0.8.

The increase in editing load brings the CPU loading from .315 to
.317 CPU hours per hour (average over the shift).

F.4.2 File System Activity

In order to begin to evaluate the file system in detail, the major
functional demands were determined, based upon the previously

described scenarios. Two types of demands were considered; data

transfer and control.

Data transfer demands were considered based on each of the inter-

connection paths in Figure F.I. The data transfer rates, averaged

by day and by shift (as defined by Figure F.3) are shown in Table
F.5. Here again, the rates are averaged either over the day or a

shift and do not consider peak loading. It is interesting to note

that if the Support Processor is relieved of the COM formatting

task, the rates for Support Processor -- File System (correspond-

ing to the first line of Table F.5) become 7.711K char/sec average
over the day and the three shift rates become 56.90, 15,38K, and

44.5 char/sec respectively averaged uniformly over the shift.

Again, the major reduction is during non-prime time.

Control [unctions were considered with respect to file activity.

Based on the NASA-supplied scenarios, the number of file

creations, file deletions, and file accesses per day were
determined for the active high-speed access files, for the long-

term, somewhat slower access files and for the slow access archive

files. In addition, the number of times that an active file's

contents were replaced by new contents was determin_,d. These

results are shown in Table F.6.
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TABLE F.5

NASF DATA TRANSFER REQUIREMENTS

(with COM)

RATE (Char/Sec)
---D_y-- Hourly Average

Average I2M_3am .... 5ami5pm ...... 5pm-12M

Support Processor - File System

Support Processor - FMP

Support Processor - Users

File System - Users

File System - FMP

29,240

.050

4,453

24,260

163,400

83.388K

.02

.228K

3.002K

294.770K

16.678K

.08

8.125K

45.9K

210.032K

35.937K

.02

.187K

1.554K

73.770K

TABLE F.6

NASF FILE SYSTEM CONTROL ACTIVITY PER DAY

i

!

FILE ACTIVITY

Files Created

Files Deleted

Files Accessed

Files Replaced

ACTIVE

2483

2483

19810

1302

FILE TYPE

1127

1127

827.7

ARCHIVE

627.3

627.3

118.3
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F.5 FUTUREWORK

In order to make the system analysis more accurate, benchmarks
must be developed which represent the work to be supported by the
Support Processor. The magnitude of editing, compiling, and
linking can be determined given the existing codes and given the
assumption that the compilers and linkers developed to support the
FMPwould be of the samecomplexity as that of the existing codes
on existing machines. Benchmarkscan be developed to study the
actual formatting rate and the SPScommittment to task management
and I/O. Moreaccurate estimates of the grid generation task and
the interactive graphics support tasks need to made.

All system-level modelling must be operationally based. That is,
the results of any system-level modelling should be easily
verified by direct observation of an actual system. If this
guideline is followed, verification of the models will become
straight-forward.
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APPENDIX G

FMP FORTRAN EXAMPLES with ORIGINAL FORTRAN SOURCE

°

The listings which follow in this appendix are examples of FMP

FORTRAN codes with their original FORTRAN source code. The FMP
FORTRAN versions _re all mentioned in Appendix A with regard to

the analysis and simulation activities of the study. In some
cases (e.g. LINKHO, COMP2 of the GISS weather codes, and the BTRI

of the Implicit Aero Code), the resulting FMP FORTRAN is incom-

plete. These cases were taken only far enough to be able to

generate an accurate timing since a functional simulation was not

required at this time.

The listings provided are identified in the table below:

Figure Application Identification

G.I Implicit Aero Smooth

G.2 Implicit Aero BTRI

G.3 Explicit Aero OUTER

G.4 Explicit Aero TURBDA
G.5 Explicit Aero LX
G.6 GISS Weather COMP2 Section

G.7 GISS Weather LINKHO (part of COMP3)

G-1



Original FORTRAN

17a400

17a500

17_600

172700

17_800

Z7_900

173000

£73100

173_00

173300

173400

173500

173600

173700

173800

173900

174000

£74£00

174_00

174300

_74q00

17q500

174600

174700

174800

i7q900

175000

175100

£75_00

175300

175400

175500

175600

175700

175800

175900

176000

176100

176_00

176B00

176400

Figure G.I Implicit Aero - SMOOTH

R}.IPRODUCIBILITY OF THE
_}'JGINAL PAGE IS P()()R
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I

i

JlO0
P_OO

30O

qO0

u_.lO

u,.;_o

u,qo

700 c

J.O00

.'LPO 0

:300

J.qO0

:500 .I.

J.600

.I.700

.1.800

.1.900

P.%.O 0

;'_00

_500

_600

_700

ZSO0

P.900

3000

_J.O0 3

_:='00

3BOO

3u, o0

_500

_600

_700

_800

3900

4000 4

FMP FORTRAN

RF/)RODUCIBILITY OF TB_

0RIG]NAL PAGE IS POOR

SUBROUTINE SMOOTH

CDtIMDH/BRSE/NHRX_JHRX_KHRX_LHRX_DT_6RHHR_GRHI_FSMRCH_

DMi_DYI_DZ_FV<5)_FD<5)_HD_RLP_O_aHE_R_HDXgHDY_HDZ_RH_

Z CNBR_PZ_ZTR_NP_ZNT_ZNT_NT_
DDHRXN /HDDEL/_ J=Z_Z00; M=¢fS0; L=_00

RE_ZON /THREED((J=_HRX-Z)_(K=_KHRX-_)_(L=_LHRX-Z))/

x = /HODEL(J_K_L)/

ZNRLL /HflDEL/ e(_)_(5)_SS_CT(5)_TZ_TZ_T_T_

WTH ORDER SMflBTNZN_ _D ORDER RT THE BDUNDRRIKS

DORLL /THREED(O_M_L)/ ; U_NG _ S_ _HU

TEMP = £,/e(JgKgL_6)

Oa i N=_5

CONTINUE

ZF (J,E_,_ ,DR, J.E@,JHRX-A) THEN

Tl = e(J+l_K_L_6)

e(O-I_K_L_ND_TZ)_TEHP

CONTINUE

ELSE

DO 3 N=I_5

TB:e(J_Z_K_L_6>

l _,X<e<J_Z_K)L_N)_TB * e(J-a_M_L_N_XTW) - 6,_CT(N))_TEHP

CQt|TZNUE

END_F

NEXTDD

ZF (K.Ee,_ ._R. K.Ee._HRX-£) THEN

DO _ N=£_5

SS = SS + u,SxSHU_<G<J_M*L_L_N)_TZ + _(J_K-I_L_N/xT_ -

Z _.xCT(N))XTEHP

CflNTZNUE

Figure G.I Implicit Aero - SMOOTH (Cont'd)
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Original FORTRAN

&

170500

176600

£?6?00

176600

L76gO0

1770O0

177_00

177_00

177300

1?TWO0

_77500

177600

177700

177800

_77900

178000

Z78100

178200

1?SO00

_78_00

_78500

178600

Z?G?00

_78800

170900

17g000
179100

Z79_00

_79300

179500

179600

179700

179800

179900

180000

_80aO0

C"

C

_0 C_I4TINUE SHDDTH_

$HDDTN_

SMDBTHH5

OD B0 _ = _Jt| SHDOTHW6

DO 30 K = _KH SMDDTH_7

DO _2 L = _LHH _HDDTH_8

KL = _L-_XND*K _HDDTHq9
;1 = KLcND SMOOTHS0

XZ = KL_xND SHBDTH51

Z3 = _L-ND SMOOTH52

_ = KL-_xND _HDDTNSB

DD _ N = 1_5 _HDDTHS_

32 S(KL_Nsj # = S<KLsl4_J)-SHU_<e<Z_sl4_d)xe(Z2_$_j).e<Xq_14sJ)x SI'|ODTH55

£ G_I_f6_J)_6,xe(KL_N_J)xe_KL_U_-q,_e{Zl_N_×e_I1_6,JJ-_,_ _HDOTH56

Q{I_HtJ)x@(IJ_6_J)>/_{KL_GsJ_ SMOOTH57

DO _0 N = 1,5 _HDDTH56

KL = ND+K SMOOTH59

;1 = KL_ND SMOOTHS0

_Z = EL-NO _NDBTH61

RETURN

END

e(KL_$_J#_e(Z2_NsJ_Xe_2_6sJ))/e<KL_$_U) _HBDTN63

KL = LHHxND+K $HDDTH6W
I1 = NL_ND SMOOTH65

_2 = EL-NO SMOOTH66

$(KL_N_U) = $(KL_N_Jj_$HZ_(e(ZZ_N_JJ_e(II_JJ-_,_e<KL_I4,J)xSHDDTHb7

Q(KL_6_Jj_G(I2_N_JjXe(I_6,J))/G<KL_6_J) SMOOTH58
CONTINUE $MDDTH_9

SHDDTNT0

SHDDTH71

Figure G.I Implicit Aero- SMOOTH (Cont'd)
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qlo0
q_O0
q3oo
qt_oo
4500
q60o
4700
q800
_9oo
5000
5100

5_00
5300

5qO0

5500

5600
5700
5800
5900
6000
6100
6_00

6300
6qo0
6500
6600
6700

6800
6900
7000
7200

?DO0

FMP FORTRAN

ELSE

DO 5 N=195

1 _,_(e(J_K*I_L_N;xT3 + e(J_k-i_L_N)XTq) - 6,XCT_N))_TEHP

CONTINUE

ENDZF

NEXTDQ

IF (LoEe. E .DR. L.Ee,LHRX-I) THEM

TI=Q(J_K_L*I_6)

O0 6 N=1_5

CONTINUE

ELSE

T3 = e(J_K_L.I_6)

Tq = G(J_K_L-i_6)

DB ? N=I_5

i _,Xe(J_K_L_I_N)XT3 + 4.xe(JrK_L-i_Iq)_TW

g - 6,XCTCN))RTEMP

CONTINUE

ENDIF

ENDDD /7HREED/ | _IVIN_ $

RETURN

END

Figure G.I Implicit Aero - SMOOTH (Cont'd)
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Original FORTRAN

&

_VILK

42_00

42300

4_qO0

42500

42600

q2?O0

42800

42900

43000

43£00

43_00

43300

43400

43500

43600

43700

43800

43900

44000

44£00

44_00

44_00

44400

44500

44600

q4700

44800

44900

45000

45100

45200

45300

45400

45500

45600

45700

45600

45900

46000

46100

46_00

46300

46400

46500

46600

46?00

(VIOOOOI5450SRH)IMPLICIT/BYRI DN NS$

_UBRDUTIN£ BTRI(ILR_IUR)

CDHH_N/BTRID#R(60_S_S)IB(60_5_5)_C(60_S_5)_D_60_5_5)_V(60_5)

DIMENSION H_5_5)

REflL LI¢_L_I_L_L3Z_L3_L33_L4_L4g_L43_Lq4_L51_L5_L53_L54_L55
ZL=ILR

;U=IUR

.I_:IL+I
ZE=ZU-&

C ZN_ERT LUDEC

UI4 = B(IL_Z_4)xLZ1

L4Z=B(IL_4_£)

Lq_=B(IL_4_Z)-L4_xUZ_

Lq3=B_IL_4_3)-LqzAu£_-Lq_xU_3

U34=<B<¢L_)-L31_UZ4-L32_U_4)XL33

Lqq=l,/(B(IL_q_-U14xL4Z-U_q_Lq_-u34_L43)

U35=(B(ZL_5)-L_lRuzS-L32XU_5)_L33

LSI=B(IL_5_I)

L5_=B(IL_5_)-LSZxuz_

L53=B(IL_5_3)-L51XUI3-LS_XU23

L54=B(IL_5_4)-LSIXUI4-LS_RU24-L53_U34

U45=(B(IL_q$5>-L41_UI5-L4_XU_5-L4_XU35)_L44

L55=l,/(_(IL_5_5>-L51_uIS-LS_U_5-L53_U35-LSq_u_5)

C C_HPUTE LITTLE R

DI=LII_F(_L_I_

D3=L33_(F(¢L_3;-L31_OZ-L3_XDZ)

D_=L44X_F<IL_4)-L41_D1-L4_XO2-L43XD3)

DS=L55X(F(IL_5)-LSZ_DZ-LS_AD_-L53XD3-L54_D4)

C CDtIPUTK BIG R 5

F_IL_5)=D5

F<ZL_W}=D4-U_SxD5

F(_L_3_=D_-U34xF(IL_4)-U35XD5

F(IL_I)=DI-Ui_xF(IL_-UID_F(IL_)-UlqXF<IL_4)-UI5_D5

Figure G.2 Implicit Aero - BTRI
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I0o

11o c

i_0 ¢

• 30 c
14o

15o

160

I?o

•_0 c

190 c

_00 c

_30
z40

250

Z60 c
z?O c
z8o c

_90 c
3OO
310

3_o

34o

FMP FORTRAN

SUBRDUTINE BTRI(IUR_

RSSUHE STRRTZNG INDEX = i

COHHBN /BTRZD/ A(IUR_5_5)_ B(IUR_5_5)_ C(ZUR_5_5)_

1 D(IUR_5_5)_ F(IUR_5_

DIHEN_IDN H_5_5)

ZHPL_CZT RERL_L_

;NSERT LUDEC <_IMPLIFIED FOR DIRGBNRL INPUT RRRRY B) FOR I=l

Lil = _.1S(I,191)

L33 = 1.tB(ls)_3)
L44 = 1./_(1_4_47
L55 = z./B(Z_5_5)

COHPUTE LITTLE Rl_ DHiTTED, THESE TEHPDRRRiE_ NDT NEEDED

THI_ PR_, CDtlPUTE Bi_ RI$

F(¢,5) = L55

F(I_4) = L44

F<I_3) = L33

_<I,E) = Lga

_(I_i) = LI1

Figure G.2 Implicit Aero - BTRI (Cont'd)
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Original FORTRAN

46800

45900

47000

47100

WTZO0

473O0

_7400

47500

47600

W7700

qT_O0

47900

48000

48£00

4_00

4_300

48400

48500

4_600

4_700

48800

48900

49000

49£00

49200

49300

49400

49500

49600

49700

49800

49900

50000

50£00

50_00

50300

50400

50500

50600

50700

50800

50900

5£000

5_100

12

C

£4

C

£1

C

COMPUTE C PRIME FOR FIRST RON

DI=LI£AC(IL_£_H_

Dq=Lq4_(C(IL_q_H)-Lq_DZ-LH_XO_-Lq3xDB)

D5=L55X(C(IL_5_H/-LS£_D1-LS_xD_-L53XDB-L54_D4)

_(IL_5_H)=05

B(IL_g_Id)=D4-U45xD5

B(IL93_H/ = D_-U34xB(IL_4_H/-U55_D5

B(XL_Z_H) = DZ-t,_XB(XL_3_H)-U24xB(IL_q_H_-U_SXD5

B(_L_H) = DZ-U3_XB(IL_II)-U_3_B(IL_H)-U14_B_IL_4_H)-UIS_D5

00 i_ I=IS_IE

CD|IPUTE B PRIHK_BI_R

DO £4 N=I_5

F(I,N)=F(I_N/-R(I,N_I)_F(I-I_a#-8(I_N_>xF(I-£_2>-R(I,N_)_F(I-I_

x)-A_I_I4_g)xF(I-Zf4)-R(I_I4s53AF(Z-£_5)

CDHPUTE _ PRIME

DO 11 N=I_5

II4SERT LUOEC 8_N

UIZ=H(£_)XL/Z

UZ3=H(I_3)_LII

UI4=H(I_4)XL££

U_5=H(/_5)_Lil

L_i=H(3_i)

L_=Hf3,a)-LB£*UZa

LBB=i./(H_B)-UI_XL3I-U_3XL3_)

L41=H(4_Z_

LW_=H<q_)-LWixul_

Lq_=H(4_3)-L4_AU_B-L4EXU_3

L44=i./(H(q_q}-u_4xLqz-u_4_Lq_-u34_L43)

U_5=(H(B_5)-L3£XuZS-L_XU_5)XLB3

U5£=H<5_£)

LS_=H(5,E)-LSZ*uI_

Figure G.2 Implicit Aero - BTRI (Cont'd)
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FMP FORTRAN

350

380

37O

380

5g0

400

ql0

q30

440

qs0

460

q70

q_0

490

50O

510

.53O

540

55O

56O

57O

580

59O
6OO

610

630

6q.O

650

660

67O

690

700

710

730

7_0

750

760

770

C

C

C

C

C

C

c

C

C

C

c

c

c

14

c

C

c

11

C

c

C

CDHPUTE C PRIHE FOR FIRST RUN

C HRS BEEN ELIHINRTEB R_ R $IHPLE

RE_UBSCRIPTING OF THE D RRRRY

B(195_11) = L55 X C(I_5_l.|;

B(i_4_H; = L44 x C(I_4_H)

B(I_3_11) = U_3 X C(IsS_H)

CONTINUE

HERE NON STRRT$ THE HRIN LOOP _F BTRI

DO 13 I = _,IUR

CDHPUTE B PRIHE _ BIGR

COttPUTE B PRIME

DO ££ N = I_5

00 1£ H = £s5

R(I_N_) X B(I-£,_H) - R(Isl4_C) X

iN_ERT LUDEC R6RIN

HERE SHRLL BE INSERTED R COPY OF THE FORHER LUDEC,
EXRCTLY R_ _N_NN _N THE IMPLICIT CODE COHPILRTION BY $CHREFFER

Figure G.2 Implicit Aero - BTRI (Cont'd)
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Origina i FORTRAN

51_00

5_qO0

5_500

51600

51700

5_900

5_000
5_I00

saaoo

5Z_O0
5_400

5_500

5_600

5_?00

5_800

5_900

55000

53X00

55E00
53300

53q00

5_500

5_600

53700

53_00

5_900

5quO0

5q_O0

54_00

54_00

54_u0

5W500

5q600
54700

54800

54900

55000

55100

55_00

55300

55W00

55500

55600

55700

c

c

c

_5

"3

C

17

c

c

U45=_H_W,5)-Lqz_u_5-LW_U_5-L43_U35)_LWW

COHPUTE LITTLE R°'_

D_=LWW_tY(I,W_-LqZ_DZ-L_D_-L_3_D3)

CDIIPUTE _IG R"_

_',ii,5)=D5

F_I,q_=D½-U45_D5

C_I1PUTE C FRI|IE_

b_ _5 H=Z_5

DS=L55_C(I,_Its-LSZ_Di-LS_D_-LS_D_-LS_Dq)

_(I_5_II_=D5

_I,4,H_=O4-U45xO5

_itifl4) = Di-Ui_(It_|I)-UZ_xB<I,3,HJ-UiHx_(I,qII4)-U£5_D5

CDMTINUE

COHPUTE _ PRIHE_BIG R FOR L_T ROH

x FtI-i,_)-_I_N,qJ_F(l-i,4/-_ti,N,5)_F(I-i_5_

COI1PUTE _ PRIME

DO i_ N=i_5

INSERT LUDEC RGRIN

Figure G.2 Implicit Aero - BTRI (Cont'd)

G-10



t

FMP FORTRAN

780 c

z90 c

_00 c

_._0

8wo

050
_60 c
_70 c

_80 c

,390

900

91o

9:)0

9t_o

95o

960

97O

980

990

1o00

1010

10_0

1o3o

1o4o

1050

_o60

;.O7O 15

_.080

Z090 13

11o0 c
1110 c

1

CONT Z NU',:"

THI_ I_ THE END QF THE HRIN ." LDDP_

COIIPUTE L;TTL£ R'_

D3 = L53 _ _'r_Z_3) - LSZ x DZ - L_ × D_>

D4 = L4_ _ 6F(X_W) - L4i _ D1 - L4_ _ D_ - L43 K D_;

05 = L55X(F(I95) - LDIXD£ - LS_XD_ - L55_D5 - L54XD_)

C_IIPUTK BX_ RmS

r_Z,5) = 05
v<x,4) = 04 -u45xo5

r_Z_>) = O_ - U_4xF(l,4_ - uDSxo5

F_19i) = D1 - U_KF(I,_) - Ui_F(X,S, * UiW_F(|9_) - UIS*D5

;F <_ .LT, _UR) THEN

DO £5 tl = ¢,5

D£ = LI£_C(I,i,II)

D4 = Lttq_<C(I,q_lt._ - LWCxDi - L4_XD_ - LH3AD3)

D5 = L55X(C(Z95,H) - L51_0£ - LS_xOg - L55xD_ - LS_xD_

8(Z_gH) _ D5

B<I_I4_ : Dq - UqSXD5

B<I9_14) : D3 - U_4xC(I_W,H_ - U_5XD5

B(I_Z_H) = O_ - U_3XB_I_3_H) - U_4XB(I,q_II) - U_SxD5

8kI9£9|4) = D£ - UI_B(Ig_gH_ - UI_B(X,_It_ - UI4XB(I,H_H;

- uzS_o5

CBNTXNUE

IIqCLUDIN_ I=IUR

Figure G.2 Implicit Aero - BTRI (Cont'd)
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Original POTRAN

55600
55900

56000
56100
56a00
56500
56400
56500
56600
56700
56800
56900
5?000
57100

57Z00
57300
57400

5?500
57600

5?700

5?500
57900
55000
58100
58200
56300
56400
58500
55600
55700

58800
58900
59000
59£00
59200
59300
59400

59500
59600

_o

zg

U&5=H(£,5)ALI£

LbL=H<5,L)
L3E=H<5,a)-L31^UZa

U_5=t'Hk_J-L_LAUZS)_LL_

LqZ=H_W,L/

L45=HfW,_)-LH£_UZ3-LHE%U_

U_4=(H_5,H)-LScAU_4-L_xu_qJ_L53

L44=Z,/<H(4_4s-U_HXL4_-,U_H_LH_-u3q_L_5)

U55=IH_5,5)-L_IAUlS-L3_XU_5)_L55

LS_=H(5_Z)-LS£AU_

L55=H_5,_)-LSlAUZ_-LS_U_

LSH=H_5,q)-LSZ_U,_4-LSZ_u_W-L53*U34

U45=<H(4_5/-L4Z_U_5-L4_RU_5-LqSAU_5)_L44

L55=Z,/(HkS,5)-LSZ_UIS-LS_u_5-LS_Au55-LSq_u45)

CDItPUTE LITTLE R"5

D_=L££RF(I,Z)

DS=L55X(F(I_5)-LSZ_Dl-LSExD_-LS_AD_-L54_D4)

CDItPUTE SIS R"S

F,:I_5)=D5
F(I_41=D4-U45_D5
F(I,_)=D3-U3_XF(I_A-U55xD5

F(_£}=Da-U_F(I,5)-UZq_F(I,q)-U£5_D5

F<I_Z)=DZ-U_*FCIta)-U1BXF(I,3)-U£W*F(I_q)-u£SAD5

I=IU

D_ £9 N=I_5

iF <I,GT,IL;6DTO_0

RETURN

END

Figure G.2 Implicit Aero - BTRI (Cont'd)
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4

!

1_0 c

_30 c
1_40 c
_£50

1£70 19
_180 _0

_ZO0

FMP FORTRAN

REPRODUC_rfY OF TIIE

ORIGINAL PAGE 18 POoI%

t4QTE THE HE_RTZUE CODE XNCREHKHTS ZN THE NEXT SECTZDN

DD _9 N=Z_5

CQNTINUE
RETURN

END

Figure G.2 Implicit Aero - BTRI (Cont'd)

I
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Original FORTRAN

7_700

7_800

7_900

73000

73100

73_00

73_I0

73_13

73_iq

73_15

73B00

73q00

73500

73600

7_700

7_800

73900

7_000

74100

74_00

7_300

74_00

7_500

7_600

7q700

7q800

74900

75000

75i00

75_00

75300

75q00

75500

75600

75700

75800

75900

76000

76100

76_00

76300

76400

C

CC

CCRLL

CCRLL

CCRLL

C_x_

_UBROUTINE OUTER_J_JE_K_,KE/

_x _UTER _OUNDRR_ COt_O_TI_N_ xx

RZ

R3

A4

COIIHOII/RZI/ RNO(_l_31_31)_RHDU(_I_31_/)_RHOV(_I_/_31_

COItHDN/RZ_/ RHDN_31_31_3£>_E_D_,31_I)_EI<_I_£_31)

COHHDN/_13/ U_3_Dl_31/_V_31_31_31),N(3£,31_31)

CDtftfON/R3/ "(_'_I/_D'_CELL_D£},USZ_UEI_U_I_JEI_ULFH_JL_'EF_'(H

_Z(DI),DZCELL_£_S£SKEI_K_KE_KLFH_KL_ZF_ZH

CDHHDN/R_/ LSHK,ILE_Z_,XL_R¢_K_K_K_K5

DOHNSTRERH RT I=IL

DO i K=K_KE

DD _ J=J_JE

RHO _IL_J_=_HB _IE_J_K_

RHOUkIL_J_K_=RHOUkZE_J_K_

RHDU{ZL_U,_=RHOV_E_J_:)

RHDN(ZL_J_K/=RH_N_ZE,J_K2

CONTINUE

ZF(JE,LT.JE_ GO TD

UPPER _o C. _T J=JL

DO _ K=k_,KE

DO _ Z=_ iE

RHD (I_JL_K)=RHO _I_JE_K}

RHDU<Z_JL,f_=RHDUkZ_JE_K)

RHDU(I_L_K_=RHDV_Z_JE_R)

_HOH_I_JL_K/=RHON_Z_JE_,R}

CONTINUE

CONTINUE

IF_KEoLT,KE_ RETURN

EOGE S. C, _T E=KL

DD _ J=J_JE

DD _ I=_, IE

RHO (;_J_KL)=EHg fIfJ_KE_)

RHDU_I_J_KL_=RHOU(Z_J_KE_)

RHDU(I_J_kL_=RHOV_Z_J_KE_)

RHDNkI_J_KL_=RHDN(I_J,KE_)

CDHTINUE

RETURN

EHD

Figure G.3 Explicit Aero - OUTER
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t
4

;LO0

._35
:_9
J.qo
_.50

;60
:70
;80
_.90

_00
_05
_09

P_O
_qO

_60
.'65
,_?0

?-8O
Z90
_00
31o

3_0
_30

_50

_60
370

FMP FORTRAN

_UBR_UTZNE QUTER<JS_UE_K_KE)

CDHN_N/RZ&/ RHD_ZU0_00_&00)_RHDU_Z00_I00_£U0)_RHDU(100_I00_I00_

CDttHDN/RZ_/ RHDH(IOO,&uO_£OO)_K<ZOO_ZOO_ZOO)_EI(IO0_IO0_£O0)

CDtlHDN/RI_/ U_ZOO_zOO_ZOO)_U(ZOO_ZOO_ZUO)_N(IO0_IO0_IO0_

CDtIHDN/R3/ Y(ZOO)_DYCELL_LOO)sJ_I_JE&_J_UK_sOLFHsJL_'(F_YH

_Z(100)_DZCELL_Z00),kS_KK_sKSZsKE_KLFMsKL_ZF_ZH

CDHH_N/R_/ X_HK_LE_ZE_IL_KZ_K_K_Kq_K5

O_NN_TRERH RT _=_L

DDRLL K=KS_KE;J=J$_JE ; U_XN_/RI1/_/Rl_/_IR_/_/Rq/

RH_(ZL_J_K) = RHD(ZE_J_K)

RHBU_ZL_J_K) = RNDU(ZE_J_K_

RHDU(ZL_O_K/ = RHDU_IE_J_K)

RHDN_ZL_J_K) = RHDN(ZEfU_K)

£_Z_J_K) = E(ZE_JfK/

IF <JE.LT.3£_ G_ TO 3

UPPER B. C. RT J=JL

RHD(Z_JK_K) = RHD<Z_JE_K)

RHDUkt_JK_K) = RHDU_Z_JE_K)

RHDU(Z_JK_K_ = RHDV(I_ JE_K)

RHDN(I_JK_K} = RHDH(Z_UE_K)

£_I_JKtK) = £(Z_JE_K)

ENDDD| GIUIN_ /RZI/_/RZ_/

ZF _K.GE.KE_) THEN

EOGE B.C. RT K=KL

DDRLL J=JS_dE_I=_fIE ; USIN_

RRDU(Z_J_KL_ = RHDU_Z,J_KE_)

RHDU(I_J_KL/ = RH_U_I_J_KE_)

RHDN_I_J_KL_ = RHDN(X_JfK£_)

ENDDD; _IUIN_ /RI£/_/RZ_/

£ND_F

RETURN

END

'R_(;f.",'_t, PA,.,[_ iT" t ',

Figure G. 3 Explicit Aero - OUTER (Cont'd)
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Original FORTRAN

43_00
_3300
43400
43500

43600
43700
_37£0

4371_
_3713

_371_

437£5

43716

43717

_3718

43719

43800

q3gO0

44000
44100
4_EO0
4_300
44400

44500

½4_00
44700
44800

CCRLL

CCRLL

CCRLL

CCRLL

CCRLL

_UBRBUT[NE 7URBDR

R3

R4

R5

e6

COHHBN/R_/ RHD<31_31_31))RHnU(31_31_31)_RHDU(31_5_)31)

CDHHO_IRI_/ RHON<31_31)31))K(31)_I)31))KI<_£)31)31)

CUHHDN/RI3/ U(31)3i)31))V(31)31)31))_<31_31)31>

C_HHUN/R14/ F(_)5)

COHHSN/R_/ PRDICT(3_)5)_P(Ba)

COtIHON/R3/ 7(31))DYCELL(_I))JSI_JEI_J_)OE_fJL_H)dL_YF)YH

1 _Z_3_))OZCKLL(31)_K_I)KE1)K_KE_KLFHsKL_ZF_ZH

C_|IH_N/R4/ ISHK_ILE)IE_IL_KI_K_K3)K4)K5

C_HHDN/_5/ 6RHMR)_RMH1)_RMMPR)CU_CUI,STDKES_UU)C0)PD)RHDU)RL)XU

C_HHDt_/R6/ RHUL(31)31_31)

CVI=I,/CU

Oa i K=_)KL

D_ 1 J=i)JL

DD i _=I_IL

7£HP=RB$(KI(I_J)K;)_CUi

_F<K,Ee,I) TEHP=,SXRB_(EI(I_J)i)+EI(I_J)_))xCUI

IF(J,Ee.I) TEHP=,5_RBS(EI(I_I_K)+EI<I)_K;)_CUI

RHUL<Z_J_=_,_70£-OS_eRT(TEHPR*3)/(TEMP+I98,6)

i C_NT_NUE

PETURN

END

Figure G.4 Explicit Aero - TURBDA
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!

t

10o
zoo

_05

_Io

_0

_3o

_0

g5o

280

._90

700

750

go0

_000

1100

i_00

1300

1500

1600

1700 I

i_00

1'900
;'000
.(-

FMP FORTRAN

SUBROUTINE TURBDR<CU)

CDHNON/Rll/RHO(i00_100_I00)_RHDU(100tI00_100)_

I RHOU(£O0_IO0_IO0)

COHHON/R_/ RHON(100_I00_I00)_E(£009100_i00)_EZ(100_100_I00)

CDHHON/R131.u(lOO_IOO_IOO)_u(IOO_£OO_lOO)_N(100_£O0_lO0)

COHHDN/RIH/ F(_95)

CDHHDN/R_/ PROICT(101,5)_P(101)

CDHHDN/R3/ Y(100)_OYCELL(Z00)_JSI_JEI_J_JE_JLFH_JL_YF_YH

i _z(IOO)_DZCELL_ZOO)_KSZ_KEI_KS_KE_KLFH_KL_ZF_ZH

COHHDN/RH/ I_HK_ZLE_ZE_Z_Z_K_K_K5

CDHHDN/_5/_RHHR_RHHI_RHHPR) EU_CUI_TDRES_U0_C0_P0_RHD0_RL_X0

COHH_N/R6/ RHUL(IO0_£O0_IO0)

DOHRIN /EXPLCT/|I=I_Z00|J=Z_I00_K=I_I00

ZNRLL/EXPLCT/ TKHP

Cvl = 1,0/CU

DDRLL J=JSI_JE_K=K_I_KEZ; USING /RI_/_/RS/

DO i I=I_IL

ZF (K,Ee,1) TEHP=0,5_RBS(EZ(ItJ_/_EI(I_J_))XCUI

ELSE IF(J.Ee.1)TEHP=0.5_RB_(EI(I_I_K)+EI(Z_K))XCUI

ELSE TEHP=RBS(EI(Z_J_K})_CU1

ENOZF

RHUL(Z_J_K) = _._70E-0_SeRT(TEHP_X_)/TEHP%Ig_,6)

CONTINUE

ENDDO; 6ZUZN_ /R6/

RETURN

END

Figure G.4 Explicit Aero - TURBDA (Cont'd)
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Original FORTRAN

%

76600

76700

76800

76900

?7000

77100

77200

77300

77310

77311

77312

77313

7731q

77315

77316

77317

77318

773_I

77400

77500

77600

77700

77800

77900

78000

7OiO0

70_00

78300

78400

78500

7_600

78700

78800

?_g00

79000

79i00

79200

79300

79_00

79500

C

CCRLL

CCRLL

CCRLL

CCRLL

CCALL

CCRLL

_UBROUTINE LX

LX DPKRRTOR

81

8a

83

A4

A5

87

COHHD|4/RII/ RHD(31_31)31))RHQU(31)31)31))RHDV431_I)31)

C_IIHDN/R12/ RHUN(31)31)_I))E(31,31_31)_EI(31S31)51)

CDIIHUN.'RI3/ O_3_31)31)_V_31)31_31))H(31_31_31)

CUHHDt4/R_4/ F(2_5)

CDI4)tON/R_/ PRDICT<32, 5> _ P(32)

CDHHDN/B3/ Y_BI))DYCKLL_I))J$1_JE1)J_)JK2sJLFH_JL_'_F_'(H

_Z_31>)DZCELLk_I>)KSlsKElskS_,KK2)KLFH_KLs=FIZH
CD|IHDN/R_/ ZSHK)ZLE)ZE_IL)KI)K_K3)K4)K5

COtlHgN/RS/ GRHHR)GRHH1)_RHMPR_CU)CVI_TDKE_)UU)C0_P0)_HD0_RL_XU

CDHMDN/R7/ DXsDXZsDY_DYZ)DZ_ DZI)EINRLL)Z_DBHL _DT)CFL_CDII_T

DTDX=DT_DXI

DO 1 K=KSl)KK_

DO _ J=J_i)4E_

DD 3 I:I)IL

PRDICT(I)I)uRHB %I,J)K)

PRDICT(I)_)=RH_U<I,J)K)

PRDXCT(Z_3>=RH_U(I_J_K2

PRDICT(I_q)=RHBH(I)J)K)

PRDICT(I)5)=K (I)J)K}
P<I)=_RHH1 _RHD(I_,K)XEI<I)J)K)

3 CONTINUE

_=1

IROOut_-i
HHI=N-I

B=I./H

II=I+IRDD

U£I=U_II)J)K_

CRLL FX_UZI)Z_J)K)_)

DO 5 _=2_ZE

K3=KI _KZ=K_ _K_=K3

ZI=I+IRDD

Figure G.5 Explicit Aero - LX
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b

£00000
100£90
Z00800

£00900
£01000
£0£100

I01_00

£01400
£01500
£01600
£01700
101710
101_00
10E000
10_£00

10_00
10E500

10zq00
£0_500
10_600
10_700
_0E800
10_900

105000
£03100
105_00
103500
103_00
103500
_03600
105700
£03800
£03810
1038_0
103900

FMP FORTRAN

_UBRDUTTHg LX

L_ QPERRTDR

CDIIHQN/R£1/ RHD_Z00,Z00_I00)_RHDU(1009£U0_£00)_RHBU(100_100_£00)
CDIIHQN/RI_/ RHDH(zOO_IOO_ZOO)_K(ZOO_ZOO_£OO)_EZ(100_100_100)
CDIIHDN/R13t U(100_£00_100)_9(100_£00,100)_N(100_100,100)
COHHDN/R£_/ F(_5)

CDII|tDN/R_/ PRDZCT(£Oi_5)_P(101)

CDtlHDN/R3/ Y(IOO)_DYC_LL(100)_J_Z_UgI_J_JE_ULFI4_UL_F_yH
£ _Z(iOO)_DZCELL_£OO)_$£_KEi_K$Z_KE_KLFH_L_ZF_ZH

CDIIHDN/Rq/ ZSHK,_LE_ZE_ZL_KL_K_K_Kq_K5
COHHQN/R5/ _RHHR_6RHH&_RHHPR_CU_CVZ_=TDAE_U0_C0_P0eRHD0_RL_XU
CDHHDN/RT/ DX_DXZ_DY_DYZ_DZ_ DZZ_E=NRLL_ZROBNL _DT_CFL_CDNST
DDHRZN /gXPLCT/:Z=l_ZU0|J=Z_ZOO_K=Z_100
DTDX=DT_DX£

DD 3 Z=I_ZL

PRDZCT(_=RHDU(Z_J_K)

PRDZCT(Z_3)=RHDU(Z_J_K)

PRDICT(I_)=RHgN(I_U_K)

PRDICT(Z_5)=E (_J_K)

P(I)=_RI1H£ XRHD(_J_K)_EI(I_J_K_

3 CONTZNUE
DD q N=I_

IRDD=N-i
NH&=N-£

B=£,/N

UIZ=U_II_J_K)
CRLL FX(UIZ_Z_J_%Z)
Dg 5 I=_ZE
KS=KZ
KZ=K_

Z_=Z+ZRDD

Figure G.5 Explicit Aero - LX (Cont'd)
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G-20

79600

79700

?9800

79900

80000

80100

80_00

80300

80qO0

80500

80600

80?00

80000 C---

00900 c

8_000

81100

81200

61300

81_00

8t500

8£600

0i700

8_800 6

81900 c,xx

82000

82100 g
8_00

oa3oo q

8_500

8_600

32700

82800

8_900

03000 ?

83100 2

83_00

63300

83q00

83500

Original FORTRAN

U,_ I=U_ Z I ! JgK)

UZZ=U( Z+l._ d_ K)

UZP=U<X,,J_K/

;F (U i1, _T, UI2, RNO, _3, XU I-I--UI ;") )_ (5,)_UI_-U I1), LT, 0, ) U I I :, 5_< (UI J.+U I;:'
× )

ERLL FX(UZI_ZgJ_Kg_I)

PRO I CT ( ': _ J.)= (NHJ.XPRD ICT( i _ _L) +RH M (X_J_KJ-DTDX_.(F(KF'9.L)-F(K.L_J.,)))_B

PRDZCT( ; _ _)= (NH.LxPRD XCT( ! 9 _-.) +RHDU( Z ,j J9 }'_)-DTDXX (r (Kts _)-F_ k£ _ 2) ) )'_B

PRD Z CT ( _ _ 3 )= _'NH ; xPRD ICT( Z _ 5)+RHBU( Z _ J, K)-DTDX>_(F( KE 9 _)-F (KZ_ 3) ) )*B

PRDICT ( I 9 W)=iNH', _PRDICT ( ; _ q )+RH_M< I 9 J9 K)'DTDX_(F (K_ 9 W)-F (KI9 W) ) )_B

PRD I CT ( = _ ..%> = ( NH" >_PRD Z CT ( I , 5) "PE ( Z 9 J9 K >-DTDX_(F<Ka_ 5)-F(MI_ 5_ ))>_B
CONTXNUE

DECODE x

DO 6 I=_IE

RHBZ=I./PRDICT(Zgl)

U (IgJgK)=PRD;CT(_,2)_RHQZ

U _ZgJgkJ=PRDZCT(Z93)_RH_Z

H (IgJgK)=PRDICT(I_q)ARHgZ

EZ(I_J_K)=PRDICT[I_5)X RHBZ -oSX(U(Z_J_K/_X_*U<I_J_V.)XX_+N<I

x _JgK)XX_)

P<X) =_RHHI_PRDZCT(_/)AEZ(I_J,K)
C_|ITZNUE

_ODNNSTRERH B, C, RT I=XL

DO 9 K6=195

PRDICT(IL_k6)=PRD_CT(IEgK_)
CREL BCYkK_LEgJgJ)

C_TZNUE

RN_ (Z_J_K)=PRDZCT(_9_)

RH_U(Z_J_=PRDICT(I_>

RH_U(IgJgK)=PRDICT(I93)

RN_N(Z_J_K)=PRDICT(Ig_$

CBNTXNUK

C_NTXNUE

CQNTINUE

ER_L gUTER(JS_gJE_gKSZgK£_)

RETURN

END

Figure G.5 Explicit Aero - LX (Cont'd)



I
J

£OqO00

104100

lOq_O0

1O4300

lOq_O0

lOq500

10q600

10_700

iOqSOO

10_900

105000

1O5100 5

105_00 C---

£05300 C

105_00

105500

z05600

105700

£05800

105900

106000

106100

106_00 6

106300 C_zx

106400

106500 9

106600

106700

108800

106900

107000

£O71O0

ZOTZO0

x07300

107q00 7

107600

107700

107800

107900

FMP FORTRAN

REPRODUCIBILITY OF TItE

ORIG1NAL PAGE IS PO: q,_

UII=U(II_J_K)

UII=U_I+I_J_K

IF(UZZ,_T.UI_,RNDo (5,xUZI-UZ_)A(3,AUI_-UX1).'..T,0,,) UXI=,Sx(uz£+UI_

x )
CRLL FX(UII_X_,J_k_ XI)

PRDICT(I _ I>=(NHZ_PRDICT(I _ I)÷RH n _ I _ d _ K)-DTDX>_(F (K_ Z)-F(K£_ 1) ) ) _B

PRD I CT ( I g _ )-- (NHZRPRD I CT ( I _ '*) ÷RHnU ( Z _ d_ K )-DTDX_( ( F( KP_ _ -F (KJ. _ _> ) )RB

PRDZCT(If_3?=(NHlXPRDICT(I_3)+RHDV(IfJ_K)-DTDX>_(F(KP_3)-F(KI,j3_S>)A,._

PRO ICT ( I _ q)=(NHI_PRDZCT( I _ q _ +RHDW ( I _ ,J_ K )-DTDX>_ (F (K_ q)-F (K£ _ _ ) ) )XB

PRDZCT( I _ 5)=( NHlY<PRDZCT( X _ 5)÷E ( I _ d_ K)-DTDX_(F(K_ 5)-F(KI_ 5) ) )AB
CDNTINUE

A DECDDE A

DD 6 I=_IE
RH_I=I,/PRDZCT(I_I>

U (I_J_K)=PRDICT(I_)_RHDI

V (I_J_K)=PRDICT(I_)_RHDI

N (I_O_K)=PRDZCT(I_q)_RHDI

EZ(I_J_K)=PRDICT(I_5)A RHDI -.SX(U(;_J_K)XX_eV(I_J_K)xX_÷N(I
X _J_K_xX_)

P(I) =_RHHIRPRDICT(I_I)XEI(I_J_K)
C_NTINUE

xDONN_TRERH B° C. RT I=IL

DD 9 K6=1_5

PRDICT(IL_)=PRDICT(IE_K6_

CRLL BCY_K_IE_J_J#
CGNTINUE

DD 7 I=_IL

RHD (I_U_K}=PRDICT(I_£)

RHOU(I_U_K)=PRDICT(I_)

RHGV(I_U_K)=RRDICT(I_3)

RHDN(Z_d_K)=PRDZCT(I_)

E _Z_J_)=PRDZCT(Z_5)
CDNTINUE

ENDDD_ GIVIN6/R£1/s/R£Z/_/R£3/_/R_/

CRLL DUTER(JS£_JE_£_EE_)
RETURN

END

Figure G.5 Explicit Aero - LX (Cont'd)
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Original FORTRAN

89800
89900
90000
90100

90Z00
9O3O0
90400
90500
90600
90700

90800

90900
91000

g£100
91_00
91300
9£400

91500
9£600
91700

C_XXX

C_XXx

CxX_

KRPRPI=kRPR+I,

CDRZQLIS FDRCE

FXCD=.I_5_DT

DD 3L30 L=I_NLRY

IHi=IH

DO 3130 I=I_H

FD(19I)=U.

FD(Jt_I)=0,
DO 3110 d=_dHHl

3ii0 FD(J_Z)=F(J)XDXYP(J_+o_5A(U<J_IgL/YU_JgZHZ_L)TU(J_IgZgL}_
x UkJ_£gIH19L/)_4DXU_JA-DXU_J_l))

Og 31_0 J=_gJIt

RLPH=FXCBX(P(J_Z)+P(J-_,Z))_FD(JtZ;+FD(J-i_Z))

UT_J_;gL)=UT{Jg;gL)_RLPH_V(JgZgL)

UT<J_ZHiqL)=UT(J_ZHI_L)TRLPHxU(JgZHI_L)

UT(J_ZgL_=UT_J_Z,L)-RLPH×U4J_;gL}

3&Z0 UT<J_iHi_L)=UT(J_£H1,L}-RLPHXU_J_ZHi_L_

3£30 ;HI=I

Figure G.6 GISS Weather - Section of COMP2
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%

7_

,,e

90000

90100

9_00

IOOQO0

&OOlO0

£00_00

100_00

100400

_00500

_00600

_00700

100800

_00900

_01000

£01100

i01_00

i01300

_01qo0

101500

10_00

IOZ300

10Zq00

10_500

10Z600

I0_700

i0_800

I0_900

_03000

103£00

I05_00

103700

_03800

103900

zOqO00
10_i00

_0_00

104300

I0_00

C

C

C

C

C

C

C

C
C

C

J.O0

_'00

FMP FORTRAN

REPRODUCIBILfI%' OF T}I_

ORIGINAL PAGE IS P_ _,r,'.

THIS I5 THE SECT%D|_ DF GI$S _ CDHP_ THRT NR$ $%NULRTKD

CORIOLZS F_RC£

DDRLL J=_JHHZ_I=I_IH
IF (I.Ee.1) THEN

_Hi=ZM

ELSE

_N1 = I

EHDIF

VD(I_I) = O,O

FD(JH_Z) = O.O

DO _00 L=_NLRY

HERE THE C_HH_N SUBSCRIPT EXPRE##I_N$ RRE N_T GIVEN

BUT THE CgHPILER I_ RSSUHED Tg HRUE EXTRRCTED THEH RPPR_PRIRTELY.

EQNT_NUK

ENDDD

D_RLL J=_JH|Z=I_IH

_F (I.E_._) THEN

_H£ = IM

ELSE

IHI = I

ENDIF

RLPH = FXC0 _ _p(J_Z)+p(J-£_E))_<FD<4_I)_FD<J-£_I))

UT{J_Z_L) = UT(J_Z_L) ? RLPH_V_J_I_L_

UT_J_IHZ,L) = UT(J_Zl4Z_L) _ RLPH_V<J_ZHI_L/
VT_J_I_L/ = UT<J_L_ - RLPHXUiJ_Z_L/

VT_J_ZHZ_L/ = VT(I_IN_L/ - RLPH_UkJ_NI_L)
CONTINUE

ENDD_

Figure G.6 GISS Weather - Section of COMP2 (Cont'd)
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G-24

91_00

91900

9_000

92100

9_200

9a300

9_400
92500

9_600
92?00
9_800

9_900

93000

93100
93_00
93300
93400

93500
93600

93?00

93800

e

Original FORTRAN

CXAAK

C_XX_ UERT_CRL ADU_CT_DN DF THERHDDYNRHXC ENERGY

DD 3_0 L=_qNLRYHI

LP£=L_I

DO 3180 I=Z,_H

DD 3180 J_lsJll

PL_=PTRDP÷SIG_LPI)_P(J_ Z)

PKi=EXP_Yk_PL£_

PR£=EXPBYKkPL_

CDZ=DSIG(LPI)/%D_X6_L)_D_ZG(LPI))

CD2=/,-C01

TKTRH=COI_T(J_L_IPKI+CD_XT(J_X_LP£)/P_

TT<J_I_L_=TT<J,;_L_DTA(_X_(L_KRPR_P(J_Z)XT(J_L)xPXT(J_)/PLZ

x -_D<J,Z,L_xTETRHAP_Z/D_XG(LI)

TT(J_Z,LP1)=TT_J_,LFI)_DT_SD(J_;_L)XTETRHXPK_/DSZ_(L)

ZF(LPI,£e,NLRY_ TTCU_;_LPI)=TT<U_Z_LP1)+DTXSZ_LPI)_KRPR_P<U_Z)X

X T<J_Z_LPZ)AP_T(J_I)/PL_

3_0 CDHTINUE

C_X_X

Figure G.6 GISS Weather - Section of COMP2 (Cont'd)
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;04500
104600

104700
104600
104908
£05£00
£05_00

£O5300
105900
105500
£05600
£05700
105800
"_05900
106000
",06£00

i06_00
£06300
",06400

10650C
i0660 u

£06700

106800
i06900
£(_7000
iO?lO0

IO?ZO0

£07300
107qO0

107500

£07600

FMP FORTRAN

RI_RODUCIBILITY OF TI-IE
_)RIGINAL P_GE 18POOR

c
c

c

300

c
c
c

_ERTICRL RDVECTIDN OF THERHDDYHRH|C ENERGY

D_RLL J=£_JI4_I=£_IM

DD 300 L=Z_NLHYHZ
LPR = P(J_)
LSI6R = SI6(L)
L_IGB = _16(L*£)

PMI = KXPB'(K_PTRDP + L_IGRRLP8)
PM_ = £XPBYM<PTRDP + LSlGBALPR)
LDSI6R = DSlG(L)

LD_T68 = DSZ_(L÷I)

LTR = T(J_Z_L)
LTB = T(J_ ZgL_£)
LSDR = _D(J_Z_L)
LPITR = PZT(J_ Z)
col = LDSI6B/_LDSZ_R+LDSI6B)
C0_ = £,0 - C0Z
TETRH = C01_LTR/P_I + C0_LTB/PK_

LTTR = TT(J_;_L; ¢ DTA(L_ZfR_K_PR_LPRALTRALPITR/PL£-
£ LSDR_TETRH_P_Z/LD_I_R)

LTTB =TT(J_K_L_£) * DT_L_DR_TETRH_PK_/LD_IGR
ZF (LP£,E_,HLRY) LTTB=LTTB + DT_LSIGBRKRPR_LPR_LTE_

£ LPITR/PL_

TT(J_;_L) = LTTR
TT(J_;_L_I) = LTTB

CONTINUE
KNDDD

C_HP_ C_NTINUES BEYDND HKRE_ THZS IS THE END _F THE PZ[CE SZMULRTKD

Figure G.7 GISS Weather - Section of COMP2 (Cont'd)
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Original FORq'RAN

_35£00

&_5_00

LDSW00

_25500

&35600

_35700

L33800

_35900

_36000

_3GZ00

L36_00

&36300

[36qU0

hD6500

a36600

_6700

_36600

a36900

_37000

_37Z00

_37_00

_37300

_7400

_37500

d37600

237700

23780t=

a37900

_380d0

_8i00

238200

585300

285_00

285500

285600

_85700

_85800

_85900

_86000

2_6i00

286_00

286_00

286500

_86600

_LISROUT;IIE L_HhH_

CUI|IIDIL_RDCDIt/PL_gJ,I:LE_/tI'LF,_.,TGt73,TL_9_,V!T_5_,JHL_9_,

_AAA_

C_RID R_RR't_ ,_T_RRGE FFD_LEI4 014 _TR_

LUGICflL CLDFL_tsE_FLG,L_*LC

;HTEGER _TY

|_ERL _RRR,_EcEK,UII_TRU£,TRUT,fiR,E_,CC,TI4_@,TI_,

x 7RU,ED|4C|I_TDFCII,ED|IC|I,TRUCZR,PiU,E_TRU,T'{,_E_I,_EK_*t_ERR_

_ERU, _ERU, RE_C _ EX_, EA_, _EHO_ _HH_, D_Ht_, PEFUP _ FEFG||

^ REF(IZ),_DNCk&_)

EQU/URLENCE (FF:_RS(i,,EUP_I_,,Fk_RSEk_)iEUP_q_)

EQU2URLEHCE kR,EDHCIIJ_RRR_DFCI|i_E_OIIC|I/,

_6E_TRUCZh)_I_iF_Uli_TRU_E:,YRU)_TRUTIT'()_

C_X_CRLRR RRRR'_ _T_6LES OR U_ED FDR INITZRLIZRTIQ|I)

DZHEN_I_N EG(ZE_Z_)_FZZ_I_,I_TR(IC_I_)_FFI(_E)_FF_(¢E),

w TEHp_B),TE_(_OI)_D'.'_i_,FIRCRO_&_,I2,II_ERD(IZ),

C;REXT_I_),CC_BR(_),COEL_H(IZ_,COEK_)

COHH_N _EXI*T/ TE_

CxX_X

C_X _NGLK L_'dER COtIPUTRT_DII

C_XA EUP=UPNRRD£ EHI_ION

C_X EDN=DOHNNRRDS EHI_I0||

E_AX TOF=TRRNSHI_SIOt{

C_%_ _EF=RE .EEIlON

CXx_

HCC=I_CLOUD(tI_

t_HER=NRERO(t_

TRUCZR=NCLOUD_t;)A_C_KE><T(LRIl=_CTRU55_

TRUH_tI,K)=TRUII_N,E*_FflUC_R

Figure G.7 GISS Weather - LINKHO
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I ii!

i

£000o0

zooioo

zoo300

iOOqO0

_005o0

Ioo600

10O7O0

£00800

1oo90o

101000

101300

I016oo

1O1700
_01800
_01900

I0_000
I0_£o0

Io_00

io_3oo

10_q00
10_500
10_600
10_?00
Ioz8oo

I_,_900
_03000

103100
_03_00
I03300

FMP FORTRAN

_UBROUTIHE LZNKHU

COllt4OH /RRDCDI4/PL_9)_PLE<ZU),PLKkgJ_TG,T_TL<9)_TSTR(_

_C_CD_Z_RSURF_SCO_Z_RRP_RRH

CDHHDN /CLDCDH/ _HRLE(16)_H_L(£5)_RL_Z_)_TAUL_£6_,OZRLE_16),

TOPRBS

LOG_CRL CLDFLG_RERFLG_LI_L_

_ERL TRUCIR_CTRU55,X_PIO_TN_RERZ_RER_RERR_RERC_RE_AERU_

1 KXI_KX_DKNUfDNHU_DNHI_RERV_EXTRU_TRU_RDNCN_EDHCH_TDFCH_

_UPCH_EDNCH

_HTEGER HCL_UD(_)_NRERO_I_

RERL CIREXT(I_)_TRUN(I_,_)_PICIR(I_)_FIZ(I_I_)_CSC£_£_)_

EDNC(/_)_TDFC<I_),RDIIC(I_)

RDDITXDItRL DKCLRRRTIDNS NOT U_ED IN THE SIHULRTED PDRTX_N

RRE DHITTED FOR BRKV%TY

STRTEHENT_ RBOUT PARRLLKLiSH RRE OHITTED ALSO SINCE LINKHD

I5 CRLLED A_ A _UB_OUTINE NITHIN THE IN_TRNCES D_ THE

DDRLL /LAYERS/ _F COMPS. IN THIS CA_E_ EACH INSTANCE

CALL_ LZNKHD INDEPENDENT FROH ALL OTHER :N_TRNCE_ RND

U_E_ A LOCRL COPY OF CODE HITHIN THE PROCESSOR IN NHICH

THE INSTANCE RE_IOEE. _E_UENCING OF THE EXECUTION HITHIN

THZ_ _UBRDUTINE IS SOLELY DEPENDEN¢ ON THE INSTANCE AND

LDCRL DRTA_ NOT ON RNY OTHER INSTANCES,

DO ZOO LAH = £_i_

o0 100 _ = z_

DD 101 N _ I_HLRYRS
|1CO = NCLDUD(N)
HAER = NAERO(H*
TRUCIR = CIREXT(LRH} X CTRU55 x NCC

= TAUd_N_K} • TAUCIR

TRUN(N_) = X

Figure G.7 GISS Weather - LINKHO (Cont'd)
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atj

->;.

= ._:,

_o_t

..!_

Z86900

_8?100

_87600

287800

_88300

_88350

_88700

E88800

_9100

_89L)00

Z89500

E89600

E89700

_89800

E90600

zgo?o0

_90800

Egogo0

_91000

_91100

_9£_00

_9£500

_g_£00

Eg_qo0

_9Z700

_93000

_93100

_93_00

_93qUO

_93500

Z93600

_9)700

Z9_800

_93900

_9q000

G-28

Original FORTRAN

PiO=PIZEKD(N)K_

C IN CR_E CODE DIDN=T GD THROUGH PROPERTIES CRLCULRTIDH

C _ET FIB TD ZERO

;F(N,LE._ TII=TSTR_H>/_?3,

_F{N._K,_J TI¢=TL_N-d)/_73.

LF(TN,GE.,_5_WS,RND,NCLDUD_N>,GT,0)FIU=U,

IF(FIO,@T.Z,E-UWI @O TO _60

XF (UCC,_T,U) _0 TO 10_

C_A_UPNRRD RND DDHNNRRD FL_XEDN(N_ OF _INGLK<KUP(N))EDN_N2) RND COHPDE

1_ IF(X,LT,Z,E-0q) GO TO £03

/F(X,GT,ZS,_U) _0 TO _UH

EXTRU=EXP(XX)

C_CLERR LR_ER--PIU,LT0_0E-W

T'¢=_O.EOxX

;T'K=TY+Z,E0

TDF(H,=TE_ITYJe_TY-iT'{el)_(TE3_IT'(+I)-TE3<IT'{))

Go TO 105

£0q CONTINUE

EXTRU=U,

_05 REV(N)=0,

DFB=(ETDP(N_-_TOPkN+ZJ)_6,_67K-UI

F6RRD=DFB_(1,_-EXTRU*/X-TDF_N_)

RN_=I,U-TDF(I:

EDtlVN_=BTDP<N_¢]XRN_+F6RRD

EUP(N)=BTOP(N_RNS-F6RRD

_0 TO _09

• 03 TDF<N)=Z,O

REFCN)=O,

EUPkNp=U.EO

EDN(N_=U,EU

GO TO 109

_UPtN_=BTDP(N_

EDI(tN)=BTDP(N+Z)
_0 TO _09

Figure G.7 GISS Weather - LINKHO (Cont'd)



I

103500

103600

103700

103800

103900

10q000

10½100

i0q200

10q300

10L_00

10_500

10q600
104700
i0q800
loqgo0

_05000

105100

105200

_05300
_05400

105500

105600

1057(10
105600

105900

105000
106100

106200

106300

FMP FORTRAN

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS p4)q)R

PIO =(TRUCIR_PICIRD(LflH) + PIZ(LRH_N))/_X+I.K-4V)

ZV(N,GE,4) THEN

TN = TL(N-3)/_73.

ELSE
TN = TSTR(N_/_?3,

KNDIF

iF (TN.GE.0.$53q8 .AND. NCC,GT.0)PID=0.

_F(PID.GT.X.E-4) THEN

AER1 = 1, - PID
RER2 = 1, - _PID_CB(LRM_N)
RERR = SCRT(RKR1/RER_
RKRU = (1. - RER_)/2.
_ERU = _1. ÷ AERn)/Z.
RERC = S_RT(3._flERI_RER2)

11 = -_RERC_X)
E×I = 0,0
IF (X1 .GE. -i80._18) EX1 = EXF(XZ)

IV <EXI.LT.i. UE-30) EXI=0.0
EX2 = ExixExi
DEN0 = Z,/((RERU_flERU_ - _RERU_flERUREX_))
DNHO = _<BTDP(N) - BTDP(N_I)/(XXAERC))X

((RERU - RERUXEX_) - <AERRAEX1))
DNHZ = RERU 9 RERU_KX2
EUP(N) = (BTDP(N)RDNHI - DNH0 - BTDP(N+I)_EX1)A

DENOxRKRR

EDN(N) = (eTDP(N+I)XDNH1 + DNH0 - BTOP(N)XExi)_
DENOxflERR

REV(N) = RERU_RERU_(I.-EX2)ADENU

TDF<N) = _RERU-RERU)_DEN0_EX1

°

Figure G.7 GISS Weather - LINKHO (Cont'd)
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Original FORTRAN

a94100

Z94ZO0

_9_300

ag44UO

_94500

Z94600

594700

_94800

Z96600

_96Z00

296800

_g6900

297000

_97100

297_00

_97300

297400

Z97500

Z97600

298700

a99400

300100

300ZOO

300800

301200

301300

30±WOO

301500

30±900

302000

30_600

302900

303000

303400

303500

303800

303900

304000

304100

_04200

304300

30q400
304440

304500

305300

305400

305500

C×_X_EMIS$IDN CRLCULRTIDNE FOR HRZE LR'(ER_EXRCT IN THE SEUP(N)SE DF ISD
C_XIC _CRTTERING

C_xXEXRCT _DLUTIDN=TNO-STRERH SOLUTIDNxFBR_E FRCTDR<PIU_TRuD)

¢60 RERR = S_RT((Z.-FI0)/_I,-PID_CE(LRM_N)))

RERU = (_-SERR)/2.U

RERU = _£+RERR)/Z,O

RERC = S_RT(RER2_,OxRER1)

EX_ = EXP(-RERC_TRUN_N_KJ)

EX2=EX&XEX&

Cg_AAXFDRGE FRCTOR FOR ISDTRDPIC SCRTTERING

FTNO=loEU
C_XX PIOZ=PIOxPIO

C_ FTNO=Z,U+O,iqXEXT_U+U.ixPIU2X<I,U-EXTRU_+(-i. O3+U.qOI9xPIO+O.6631X
C_X_IPIO2_XxEXTRU_(2,UiT_-o,6_O_P_O-Z,3597XRIO_)xXAXAEXTRU_EXTRU

DENO = (RERUx_2 - RERU_x_)_EX_

DNHU = _BTOP_N_-BTOP(Nel_)/TRUN<N_K)_/RERC_
1 <RERU-RERU_EX2-RERR_EXZ)

DNH_ = RERU m _ERUXEX_

EUP<N/=_BTDP_N)xDNH_-DNHO-BTOP_N_I)aEXI)/DENO_FTNO_RERR

EDt_N)=kSTOP(H_i)_DNHI÷DNHO-BTOP_N}_EX1)/OENOXFTNOXRERR

C_REF<N)_TDFkN) BRSED DN TAD STRERM SOLUTION
REF(N_=RERUxRERU_Z,0-EX_)/DENO

TD_(N)=_RERU-RERU)/DENO_EX1

C_x_ FORM TOP CDHPOSITE LRYER <RDDZTION)

I09 DENO=I,U-RDNCN_REF<N)

EUPCN=EUPCN_%EUP(N)+EDNCN_REF(N))_TDFC(N)/DENO

EDNCN=EON(N_*kEDNCN÷EUP<H)_RDNCN)_TDF(N_/DEND

_F_NCLOUD{N_,_ToU_ CLDFLG=,TRUE,

CAAXX _ET REROSDL FLRG IF CIRRUS CLOUDS KHIGH RLBEDO)

ZF<CLDFLG,RNO,P_U,GE°£,E-_ RERFLG=.TRUE,
C_XXX TRRNSMISSIDN CDt|PUTED DIFFERENTLY FOR 3 CREES

IF <CLDFLG,0R,RERFLG) GO TO 125

C_XX CRSE 1. RTHOSPHERE HRS NO REROSDLS DR CLOUDS THRU HERE

C_xX_ USE EXPDNENTIRL INTE6RRL RPPROXIMRION

TRU=TRU_TRUN_N_k}
C_ PROTECT RGRIN_T TRBLE OUERFLDH

T'(=_0o_TRU

ITY=TY+I.

:F(ITY,LT,&_ ITs=1

TDFCN=TE_(IT'(_+(TY-ITY+I)_TE_(ITY+I)-TE_(ITY))

_o TO zE5

TDFCN=O,

iF(,NOT,RERFLG) GO TO 130

C

a.a4

_._5

Figure G.7 GISS Weather - LINKHO (Cont'd)
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j'_r

_ _l(__

106305

106310
106315
1063e0
106325
I06_00
_06500
106600
106700
106800
107400

107450

107500
107600

107700

107800

107900

X08000

108050

108100
I08_00

106300
zo_qoo

£06500
_06500

106700

£06600
106900
109000

109100

109_00

109300

ZO9_O0

£09500

z09600

109800

10gg00
110000

FMP FORTRAN

ELSE IF (NCC.GT,O) THEN

TDF(N) = 0.0

REF(N_ = 0.0

EUP_N) = BT_P(N)

EDN(N} = BTBP(N+I)

ELSE %F _ X.LT,I.E-_) _HEN

TDF(N)=£,0

REF(N) = 0,0

EUP(N) = 0.0

EDN(N) = U.0

ELSE

ZF (X ,LE. i_,0) THEN

EXTRU = EXP(-X)

ITY = XX_0. • £.

TDF(N) = TE3(ZTY) ÷ (TY-ITY+£) x (TE_(ZTY+Z)-TE_(ZT7_)

ELSE

EXTRU = 0.0

TDF(N) = 0.U

ENDZF

REF(N) = 0,0

XI = I,U - TDF(N_

X_ = ((£,0 - EXTRU)/X-TDF(N)) x _(BTDP(H_ - BT_P(H+I))_

0.6666)

EDN(N) = BTUP(Nel)AxI÷x_

EUP(N) = BTDP_N}_X£-_

EHD_V

DENO= 1.0/_1.U - RDNCN_REF(N))

EDNCN = (EDNCN÷EUP(N)_RDNCN) _ TDF(N_ X DENO÷ EON(N;

IF (NCC,GT,0) CLDFLG = ,TRUE.

IF(CLDFL_.RND,PID._E,I,UE-_) RERFL6=,TRUE,

_F (,NOT,(CLDFL_._R°RERFLG)) THEN

TRU = TRU + X

ZF _TRU .6T, zS) THEN

TDFCN = U.

ELSE IF ((_0,_TRU+Z.),LT,I_ THEN

ZTY=I

TDFCN = TK3(ITY)+_TY-ITY+I;A(TE3(ZTY+I)-TE3(ITY))

ENDZF

ENDIF

\

Figure G.7 GISS Weather - LINKHO (Cont'd)
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Original FORTRAN

305600
_05700
_06aO0
306500
307000
307£00
307_00
307300
307q00
30?500
307600
307700
307800

307900
308000
30_050
308060
308070
310600
310700
_i0800
310900
311000
311100
311_00
_1_000
31_100
31Z_00

31_?00
313100
313500

313900

31W000
31_100
314_00
314300
31q700
3iq800
3±½900

314910
3149_0
314930

C
C

C

CRSE _, _|GNIFICRNT RBSDRPTIDN

RDNCN=REF_N)+TDF(N)_RDNCNATDF(N)/DEND

TDVCN=TDVCNRTDF(N)/DEND

IF <NCLDUD(N},EG,U,DR,PID,GE,I,K-4) GD TO 140

CASK _, HERUY CLOUD CDUKR

TDFCN=U,

RDNCt|_U,

TRU=O,

CD||TINUE

_RUE PRRTIRL _UHS

EUPC(N}=£UPCN

EDNC<N)=EDNCN

TDFC_N}=TDFCt|

RDNC<N)=RDNC||

CONTINUE

RDD:NG GROUND L_YER NOT INCLUDEU

C_X_A

CAA_VDRH _DTTDH CDtlPDSITE LRYER (RDD_T_DN)

C_AA_

DO i1_ N=_,NG

H=NG÷I-N

DEN0 = /,U - RUPCN_REF(H)

EUPCN=EUP<H)*<EUPCN_EDN<H)XRUPCN;_TDF<H)/DEHD

IF<H.Ee,I) _O TD _19

L=H-_

RUPCN=REF(H)_TDF(H)ATDFfH)_RUPCN/DEND

DEND=/,U-RDNC<L;ARUPCN

PEFUP =_EUPCNCEDNC(L)ARUPCN)/DEND

PEFDN =_EDt|C(L)+KUPCNRRDNC(L))/DEND

GO TO 1_0

.19 PEFUP=EUPCN

PEFDN=U,

-_0 FE<N)=FE(N}+CKLRH_<_EFUP-PKFDN)

11_ CONTINUE

100 CDIITINUE

_00 CDNTINUE

c
C _RVE _TRRTD_PHERIC FLUXES NOT INCLUDED

C

Figure G.7 GISS Weather - LINKHO (Cont'd)
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110300
110400
1£0500
_L0600
_10700
£10_00
110900

IILO00

liL_O0

I££350 _Oi

II£_00

Ill500

ILZ600

_I1700

ILISO0

_£1go0

LL_O00

_i_£00

il_O0

I£_00

Li_500

_I_600

_£_?00

II_800 IL6

LIZ900 iO0

L£_O00 _00

FMP FORTRAN

REPRODUC_ILITY OF THE

ORWJNAI, PAGI", l,_ P _ _'

IF (SERFLG) THEN

RDNCN = REV(H_ _ TDF(H)ATDF6H)_RDNCH_DEN0

TDFCN = TDFCNxTDF(N)XDENU

EHDIF

ZF(NCC,HKtU ,DR, P_O,LT,£,0E-_) THEN

TDFCN = O.0

RDNCH = 0,0

T_U = O_O

KHDIF

EUPC(H_ = EUPCH

EDNC<NS = EDIICt|

TDFC(NJ = TDFCN

RDNC(N_ = RDNCN

CONTINUE

DENS = _,U,'<_,U-RUPCN_REF(H))

EUPCH = EUP(H) * ((EDH(M)XRUPCN+EUPCH) x TDF(H)xDENU

_F (H,NE,Z) THEN

RUPCN = REF(H) ÷ (TDF<H)XTDF(H)_RUPCN_DENU)

L=H-i

DENU = I,/(Z,-RDHC(L)XRUPCH)

PEFUP = LEUPCN • EDNC(L)_RUPCN)_DEN0

PE_DN = _EUPCN * EDNC(L_RDNC(L))xDENU

ELSE

PEFUP = EUPCN

PEFDN : U,0

ENDIF

FE<H) = F'E(H) _ _PEFUP-PEFDN)xCLK_H

CD/|TIHUE

CDtITINUE

COIITIHUE

Figure G.7 GISS Weather - LINKHO (Cont'd)
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i APPENDIX H

CONNECTION NETWORK SIMULATION TOOLS

H.I SUMMARY

Two computer-based tools were developed as an aid to the study of
the various Connection Networks. The first was a functional

simulator. This functional simulator supported evaluation of the

Benes, the single-layer Omega, and the simple double-layer Omega

networks described in Appendix B. The networks could be exercised
in a number of modes including random inputs and p-ordered inputs.

Section H.2 below discusses these capabilities in more detail.

The second tool was a stochastic analyzer (see Section H.3). This

tool used the probability of addresses occurring and the probabi-
lity of requests occurring within the network to predict blockage

within the network. Although this approach precluded actually

observing where specific blockages would occur for a particular

input situation, the tool was felt to be necessary because it
would be unreasonable to run all possible input combinations. The

stochastic analyzer was used to evaluate both the single-layer

Omega network and the double-layer network which included

inter-layer connectivities.

It was noted in Appendix B that both tools gave comparable results
when run on the same cases. This correspondence gave confidence

in the results obtained using these tools.

, + %<,,

i ''<,

__ >+,::'_

I :o_"

t

H.2 CONNECTION NETWORK FUNCTIONAL SIMULATOR

H.2.1 Model

The CN simulator is designed to simulate a CN in which requests

propagate through at the speed of transmission delay in cable and

combinatorial logic, after which the path is locked up for the

duration of the EM cycle. After an EM cycle, the nodes involved

in this path may be unlocked if they are not involved in another

EM request.

In addition to nets with the connectivity of Benes networks and

Omega networks (see Appendix B), there are options on the amount

of redundant paths supplied. There can be twice as many ports on
the processor side as there are processors, or there can be just

512. The EM module ports can be spread across the entire 1024

ports on that side, or they can occupy the first 521. The simu-

lator basically has a 1024-wide network of 2 x 2 switches.

The number of CN-clock cycles per EM cycle time can be adjusted

from 1 to 9 by an input parameter.

H-I



Each simulated processor has a queue of up to six memory requests.

The Nth entry in this queue may be either a set of "S" random EM

module numbers, with 512-S of the processors having null requests,

or the entry may be a p-ordered or a p-q-ordered vector of EM
module numbers, with 512-S of the processors having their requests

nulled before the program starts. S is an input parameter ranging

from 0 to 300, or equal to 512.

The four-diglt seed of the random number generator is included in

the set of input parameters.

H.2.2 Simulator Controls

The input commands accepted by the functional simulator are listed

in Table H.1 below. Some of these inputs are optional and have
default values as indicated.

Table H.I

CN Functional Simulator Input Commands

Command De scr ipt ion

Fn Type of Network where n is the sum of
0: if a 19-1evel Benes Network

I: if a 10-1evel single-layer Omega
network

2: if a 10-_evel double-layer Omega
network with alternating priorities

4: if processor M is attached to

input port 2M

8: if EM module N is attached to output

port 2N up to 511 with the other 9
attached output ports I, 3 5, ... 17.

(If no F command, F0 used as default)

Command

An

Description

Algorithm to be used within each 2 x 2 node where n is:
0_ the node gives priority, in case of conflict,

to the lower-numbered ("upper") input on all

one-sheet (single layer) cases, and to give
priority to the higher-numbered ("lower") input

for the second sheet in a double-layer Omega
network.

i: the node sets a straight-through connection in
the case of conflict.

2: the node alternates the priorities between

upper and lower input ports on alternate CN
clocks. If this mode is chosen, it is recommended

that the number of CN clocks/EM clock be odd

(see Tn command below).
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Snnn

Tn

BR

nnnn

Table H.I (Continued)

(If no A command, A0 is used as default.)

Command which causes all but "nnn" of the 512

entries in each queue position in the processor to
be erased. The choice of which entries to erase

is random.

(If no S command, S512 is used as default. This

corresponds to no erasures.)

Command which sets "n" cycles of the CN clock for
each EM access time.

(If no T command TO is used as default.)

An optional command that signals the "bit-
reversal" of processor number to TN pork number.

That is, if BR, then proc. 1 goes to port 256,

proc. 2 goes to port 128, proc. 3 goes to port

384. That is, proc. 00000011 goes to port
11000000. Processor no. 00010111 goes to port no.
11101000, etc.

A four-digit number sets the seed for the random

number generator.

Pnnnmmm Sets a p-ordered vector into the next entry across
all processor queues. The entry has an offset of

"nnn" and a skip distance of "mmm".

Qaaassskkkxxxqqq Sets a p-q-ordered vector into the next

entry across all processor queues. "aaa" is the

offset to the start of the first vector piece, sss
is the skip distance within pieces, kkk is the

length of each piece, xxx is the number of ele-

ments omitted if the first piece is shorter than

kkk, qqq is the skip between the end of one piece

and the beginning of the next.

R Sets a vector of 512 random requests into the next

entry in all the processor queues. (The seed for

the random number generator should precede this
command.)

Lnnn This command imposes a limit on the number of CN
cycles through which the simulation will run.

Termination will be after "nnn+l" CN cycles.

(If no L command, L047 is used as default.)
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C

Warning: Although the input is free/form, in that the sequence of
commands does not matter and any number of intervening blanks are

allowed, each number must follow its command without any

intervening blank, and must consist of exactly the correct number
of digits.

Following all commands, any character (such as "X") that is not ?,
E, N, D, or the first character of any valid command, will termi-

nate the input. The rest of the card can then be used for comment

which will be printed out on the first llne of output.

H.2.3 Simulator Output

Figures H.I, H.2, and H.3 are examples of three, typical CN Func-

tional Simulator outputs. These examples happen to use p-q-

ordered vectors as inputs with piece lengths of 31, I00, and 30.
The cases were taken from the explicit and implicit aero flow
code. Two of these cases are in mesh sizes as exhibited in the

listings supplied by NASA, and one of the cases exhibits the full
size.

The first line, of the printout ,,hlch begins with "?END" prints
the input commands as previously described. For example, Figure

H.I shows (on the first line):

T2

BR
FI4

(2 CN Clocks per EM access time)
(Bit reversal of processor number to CN port number)

(Double-Layered Omega Network w. alternating priori-

ties (2) + processor M attached to port 2M (4) + EM

module N attached to port 2N.(8))

Q047 1 31

047
1

31

1

409

1409 (p-q-ordered vector with
offset

skip distance within pieces
length of each piece

number of elements omitted if the first piece
is shorter than 31

skip between the end of one piece and the

beginning of the next.

The next several lines of the output summarize the simulation

conditions specified by the input commands.

The remaining output, summarized below, is printed at each network

layer at each CN clock.

ist line: Number of items left in processor queue before begin-

ning. Does not include items picked up by bumping the

processor queue pointers.

(Text continued on page H-13)
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REPRODUCIBILITY OF THN

ORIGINAL PAGE 18 POOR

2d and 3d line: Report of distribution of EM conflicts (pileups).

(number of pileups) x (length of pileup), from lengths of 0

through 15. Any EM module with a pileup of i0 or more will
have a line stating its module number and the size of the

pileup.

4th linez "On the nth cycle"

5th line: "There were sss successes in rrr requests". For ver-

sion A, the number of successes listed in the first report is

for the first layer; the number of successes listed in the
second report for the nth cycle is the total for both layers.

Next 32 lines: 512 entries, one for each processor. At each
entry we find "-" if no request was made, otherwise the EM

module number of the request, prefixed by "*" if the request

was granted, by "EM" if the EM cycle is still running, so the

path is locked up.

U

H.3 CONNECTION NETWORK STOCHASTIC ANALYZER

The Connection Network Stochastic Analyzer is used to compute the

p-obabilities of input, output and blockage for each switch across

the connection network (CN). These computations are then used to
determine blockage at each level, and finally to determine total

blockage. This tool was not developed to test the performance of

the CN under specific conditions. Rather, the question raised was

what would the effect of the CN be on the average. An initial
assumption was made that the inputs to be evaluated would be

random permutations of the destination addresses. Under this

assumption, no blockage would occur due to simultaneous reference

to the same destination. Although such a situation will actually

occur, it is a misleading situation when studying the effect of
the network itself. The functional simulator did allow consider-

ation of such simultaneous reference situations.

H. 3.1 Model

The Stochastic Analyzer was implemented to study the single-layer
Omega network and the double-layer Omega network with interlayer

paths at each node. An example of such a network is shown in

Figure H.4. In this figure 8 processors and ii memories are

connected. For the purposes of this model, the II extended memory

modules are "spread" as evenly as possible across the output ports
of the net (i.e. with 16/11 steps between each connection.) This

mapping should be equivalent (although it is not the same) to some

of the mappings discussed in Appendix B.

H.3.1.1 Input Probabilities

Since only random permutations are considered, each destination

port address (for those ports with memory modules attached) occurs

with equal probability. As pointed out earlier, there may not be

as many memory modules connected as there are output ports on the
network. As a result, the probability that a specific bit in the

destination address = 0 or 1 is likely to vary from bit to bit.

H-13
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For example, in Figure H.4, the probability that the high order

bit of the destination address = i is 5/11 and the probability

that that bit = 0 is 6/11. This probability affects the proba-
bility of an address occurring on one or the other outputs of a
switch.

H.3.1.2 probability Computations

The computations performed by the analyzer are based on the

probability of occurrence of each possible input combination to

each switch or node in the network. For example, consider the

switch marked A in Figure H.4. For this example, assume that the
network is a single-layer Omega network. The probability of

blockage in that switch is the probability that the inputs are

either both 0 or both 1 simultaneously. If P(INPUT) is the proba-
bility of an input request occurring and if P(0-BIT), P(I-BIT),

P(2-EIT), P(3-BIT) are the probabilities of the high order through

low-order bits of the destination address, then the upper input to

A exists with the probability:

P(A-UPPER) = P(INPUT) x P(0-BIT=I) (H.I)

Similarly, for the lower input

P(A-LOWER) = P(INPUT) x P(0-BIT=I) (H.2)

Then, the probability of blockage in switch A can now be deter-
mined.

P(A-UPPER=I) = P(INPUT x P(0-BIT=I) x P(L-BIT=I) (H.3)

P(A-UPPER=0) = P(INPUT) x P(0_BIT=I) x P(I-BIT=0) (H.4)
P(A-LOWER=I) = P(INPUT) x P(0-BIT=I) x P(I-BIT=I) (H.5)

P(A-LOWER=0) = P(INPUT) x P(0-BIT=I) x P(I-BIT=0) (H.6)

P(BLOCK-IN-A) = P(A-UPPER=I) x P(A-LOWER=I) +
P(A-UPPER=-0) x P(A-LOWER=0) (H.7)

Substituting known values:

P(INPUT) = 1 (assume all inputs active)
P(0-BIT=-I) = 5/11

P(I-BIT=0) = 6/11

P(I-BI_=-I) = 5/11

Then :

P(BLOCK-IN-A) = [5/ii x 5/11) x (5/Ii x 5/11) + 5/11 x 6/11)

x (5/11 x 6/11) = .104

Using similar techniques, the probability of outputs occuring on

the outputs of switch A can be determined. This sort of computa-

tion can then be carried on through the network, taking into

account the probability of blockages and the probability of the
corresponding address control bit.

H-15



H.3.2 Anal_zer Controls

The user inputs the number of processors and memory modules in the

system as well as the number of switch levels (up to 10), the

number of input connection points, the number of active processors
( total processors), and the number of layers (i or 2) in the

network. Using this information the analyze_ builds a table

representing the connection network. This table provides for

processors to be mapped onto input ports, outputs from one level

mapped onto inputs of the next level, and switch outputs mapped

onto memory modules. Each switch's input probability is used to

compute its own output and blockage probabilities.

H.3.3 Analyzer Output

When the calculations for each switch are completed, a listing is

prepared which fully describes the network analyzed. All of the

user-input information is printed as well as processor and memory
mod mappings. Total blockage and blockage for each level is

printed, as well as each switch's output probabilities.

Figure B.5 shows an example of an additional output which summar-

izes the results of a number of runs. The output for each run

specifies the number of processors, of memory modules and of ports
in the network being evaluated. The number of active processors

identifies the average number of processors actively presenting
requests to the network. Cumulative blockage probability is the

probability that any request made is blocked somewhere within the

network. The number of inputs per switch identifies which type of
network was run. A 2-input switch is used on the single-laye£

Omega network. A 4-input switch is used on the double-layer Omega
network with interlayer communication. The line identified as

Probability of Blockage summarizes the cumulative blockage at each

level through the network from the processors (on the left) to the

memory modules (on the right).
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APPEL_DIX I

BENES ANp OMEGA NETWORKS FOR FLOW MODEL PROCESSING*

INTRODUCTION

i

Parallel processing machines gain time at the expense of addition-

al processing elements. However, parallelism entails processor

access problems. The major assumptions of the NASF Flow Model
Processor are:

i) There are 512 processing elements and 521 extended memory
modules.

2) Some hybrid of a Benes or Omega network is used to connect

prucessor elements to EM modules and processing elements to
processing elements (See Figure I.IA and I.IB).

Roughly, the more processing elements, the faster the machine can

run, given a program which exhibits a large degree of parallelism.

If there is a prime number of memory modules -- 521 is prime--then

corresponding column elements of a p-ordered vector are stored in

different extended memory modules, making it particularly easy to
access a column at a time (see Figure 1.2). However, in assuming

521 EM modules, we presume that matrices are to be stored across

the EM's. It may be beneficial to be a slight bit heretical and

ask whether matrices stacked into a single EM might not be more
effective in executing block transfers to local memory. It is to

be remembered that a single processor will most often want, say

VECT(I), VECT(I+I), and VECT(I-I), which may be stored

concurrently in local memory. This, however, seems to be mainly a
software problem.

The choice of a Benes or an Omega network is a pragmatic one based
on required hardware and expected transmission time. (See the

chart on pg. 109 of Ref. i). Ultimately, we settle for Benes and

Omega networks because they appear to be the most efficacious
solution presently available. While Benes (2, 3, 4) has shown

that for the network which bears his name, there exists a non-

blocking control pattern for every arrangement of inputs to

outputs, practically speaking, computation time is prohibitive.

Thus, the concept of distributed control arises; this concept
works especially well with an Omega--since at the ith level in the

network, there is a relatively simple mapping between the ith most

significant-bits of two or more addresses and the state of the
switch.

*Originally submitted in September, 1978.
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Figure I.IA
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Figure I.IB
omegaNetwork (n=4)
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1.2 ANALYSIS OF TWO-LEVEL OMEGA NETWORK WITH INTER-LAYER
CONNECTIONS

i

The object of the two-layer Omega node-level analysis is to obtain

the blocking probability at each level in the network from its

input probabilities. The output probabilities can then be calcu-

lated from the input probabilities and blocking that goes on at

each switch. These outputs are then re-ordered by the connectiv-

ity of the network, and they become the inputs for the next level.

An important fact in this analysis is that each switch in a given

level has the same set of input probabilities. Thus, the probabil-
ity of a block at one switch becomes the probability of blocks at

N switches. We assume an unpacked Omega (with N processors

attached to 2N input ports), so that the inputs to level one are

all at the A-port of the first layer node. (Figure 1.3). There

are then two possible inputs since it is equally likely that the
address bit will be a one or a zero. These bits determine the

switching operations performed by the node on the address under

the switching rules. It is clear that on the first level of an
unpacked network, there will be no blocks, and that, furthermore,

the second layer is not used. The topology of the network implies

that there are nine possible input combinations to the second

level, each of which has an associated probability. On the second

level, the fact that IA= address, IB = address (where IA and IB
are inputs A and B) is now a possible combination implies that the

second layer is now used, although there are still no blocks on

this layer. There are 49 possible input combinations to the third

level. Blockage is now possible since there can be three inputs
to one two-layer switch pair. On the fourth, and all subsequent

levels, there are 81 input types. This is basically base three in

four places where the three characters 0,i and blank are permuted

over IA, IB, IA and IB. Table 1.4 gives the input, output and
blocking probabilities for these first four levels done in the
hand simulation.

There are two concepts which should be understood concerning the

evaluation of the network through each succeeding stage. They are
a) increasing randomness, and b) decreasing density. While initi-

ally most of the addresses are on the lower layer, conflicts on

the lower layer tend to send more addresses to the upper layer.

In equilibrium, both layers will be equally occupied. Now a nec-
essary condition for a block in the network is that there be two

inputs on one layer, and one on the other. One might think,

therefore, that maximum blocking will occur when the first layer

has twice as many addresses as the second layer, but since

blocking is symmetric between layers, maximum blocking is expected
to occur when the two layers are equally dense, i.e. when the

system is completely randomized. On the other hand, the fact that

blocking implies a decreased density of addresses as the addresses
are blocked means that the number of blocks should decrease as re-
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quests progress through the network. However, since the actual

number of blocks is small, this effect will be small at first, but

will become more important as the system tends towards equilib-

rium. Thus, we would expect the blocking probability to increase

initially due to the effect of randomization, and then to decrease
due to the effect of decreasing density. However, it is not clear

on which level the turning point will occur.

When it was realized that more blocks would occur on some levels

than on others, a search began for the best way of adding a small

amount of hardware to improve performance. First, it was felt

that one probably not want to take any levels off of the second

layer (with the exception perhaps of the first level), _ince the
loss in efficieny at that level would be greater than any

"marginal gains" at any point in a third layer. Secondly, it is

clear that once a new layer is initiated, it must be continued to

the destination ports if the addresses are not to be inj. cted back
into the lower layers.

This led to the concept of the three-layer network by asking how

such a system might "grow". Indeed, there are some similarities
between the transposition network and the corpus callosum (which

unites the two hemispheres) of the human brain. However i_ seems

somewhat deceptive to think in terms of layers, for each switch
pair may be reduced to a planar circuit with, say, four inputs

being mapped to four outputs. As described in Chapter 5, each of

these input and output sets are composed of twelve or more wires,
at least nine of which control the switch settings for the various

levels of the network; the other three or more wires may play

special parts in the local control of the switch. The frames of
data may follow the 'net-code' through the network to be stored in
buffers at the terminal end.

1.3 SKIP DISTANCE ANALYSIS

When a p-ordered vector _s stored across extended memory, cor-

responding column elements are stored in modules (o+pi)mod521 as

shown in Figure 1.2, where o is the offset and i is the row
number. When each processor gets a succeeding row element, i

becomes the processor number. This is particularly important in

lock-step operation, but is also relevant in the early stages of

any loop.

Results of hand-simulations which were performed for 8 x ii un-

packed Benes and Omega networks are summarized in Tables I.l, 1.2
and 1.3. It becomes clear from these charts that these networks

are symmetric with respect to skip distance, i.e. there is a

correspondence:

skip 1 to skip I0
skip 2 to skip 9

skip 3 to skip 8

skip 4 to skip 7skip 5 to skip 6

:- _ I-7



Level 1 OaOa, ObOb,

** % %
A* % %
*A 0 0

AA 0 0

Blocking

O%

Level 2

** 9/16 9/16

A* 6/16 6/16
*A 0 0

AA 1/16 1/16

0%

Level 3

** 9604/16384 9605/16384
A* 5096/16384 5096/16384

*A 392/16384 392/16384

AA 1292/16384 1292/16384

Level 4

Not completed

1.46%

(7.47 blocks)

1.79%

(8.99 blocks)

Table I.l

Summary of Node-Level

Hand Analysis



i

Skip

Table I. 2

Skip Distance Analysis for OEMGA Network

Offset

012345678910 Ave.

14141413223 1 2.6

20 i 0001001 i 0 0.4

30122222222 1 1.8

42131112231 1 1.8
50000000000 0 0

60000000000 0 0

* 71223112131 1 1.8

* 80122222222 1 1.8

* 90100010011 0 0.4
103232141404 0 2.4

*Assured by Symmetry

i

I

J Skip

Table I. 3

Skip Distance Analysis for BENES Network

Offset

012345678910 Ave.

10000000000 0 0
20213220100 1 i.i

30000000000 0 0

41111112121 2 1.3

50000110110 0 0.4
60011000000 2 0.4

71212121111 1 1.3

80000000000 0 0

92022312010 1 1.3

I00000000000 0 0
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1.4 TOWARD A GENERAL ANALYSIS OF TRANSPOSITION NETWORKS

In its most abstract formulation, a system such as a transposition
network can be described in terms of its states in a stochastic

process. In an unpacked one layer Omega network, there are n2 n

switches, where n is the number of levels. Each switch can occupy

one of nine possible states, two of which are blocking, and seven

non-blocklng. Much llke a system of N pennies, which can take on
2N different states, an n-leveled transposition network can take

on 9 n2n states of which 7n2n are non-blocklng. These very large

numbers give us every possible combination of switch configur-

ations which the network can occupy.

One problem with such an analysis[2], is that not every state

corresponds to a physically realizable configuration. In

particular, there will be states for which no continuous path can
be drawn.

One might then come to take the path rather than the state of a
set of switches, as our unit of analysis. In an Omega network

there is one and only one path by which any given input can reach

any given output. (In a Benes, there are 2n such paths, one for
each switch from the middle level.) Now assume that there are 2n

inputs-- one for each switch -- and 2n+ r outputs -- where r

includes additional outputs plus one output corresponding to a
null request. Then there are order 2 zn states in the sample

space, each described by 2n input-output pairs.

The problem then becomes one of obtaining the blocking probability
for each of these states. This must involve the structure of the

network itself. One can note, however, that blocking in an Omega

is a function of input pairs, for on any level only two inputs may
share the same switch. A mathematical algorithm, for determining

whether any given input pair results in a block is given in the

following section, Part B. It is noted here that such an algor-

ithm requires, at most, a comparison of each of 2n input-output
pairs for each of n levels. Thus, for order 2 2n states, there are

order n24n or N41og2N comparisons that must be made to completely
determine the blocking probabilities for all possible states.

This number may well be
results, even if it need

purposes. Says Benes: [i]

dishearteningly large

be done only once

for practical
for simulation

In most congestion problems, it is easy enough to construct
(say) a Markov process that is a probabilistic model of the

system of interest. But it is dififcult, because of the

large number of states and complexity of the structure, to

obtain either analytic results or fast reliable procedures.
This circumstance has been a major obstacle to rpgress in the

congestion theory of large systems. One of its consequences

has been that in some cases, models known to be poor rep-
resentations of systems have been used merely because they

were mathematically amenable, and no other tractable models

were available. (pp. 1216-1217)



In another place he talks of possible "equivalence relations"
betweensimple modelsand morecomplexones.

The following is actually a model for determining the probability
that x random assignement from N inputs to N outputs will be
unique. The first input may choose any of the N outputs. The

second input has an (N-I)/N probability of choosing one of the

empty ones. The ith input has an (N-i+I)/N chance of choosing one
of the empty ones. For x random assignements, the probability is

E Fx,,,N) =

i .,,

i !i

that such a mapping will be unique.

The above formula is expected to be related to the probability of

obtaining z successes across N ports in a packed Omega network.
(This suspicion is based on the fact that there is one and only

one path for each input-output pair.) For small x, this function

is presumed to increase linearly, but for larger x and z z seems

to increase more slowly than x. Qualitatively, unpacking the

network corresponds to increasing N, which increases E(z in N).
To find the expected number of successes in an equilibrium condi-

tion, set E(z in N) equal to 1/2 and solve for z. However, for a

more exact and more complicated procedure for obtaining this
result, see Section 1.7.

1.5 PERMUTATION GROUPS AND PARTITION SETS

Bene's proof of the fact that a network of 2Nlog2N switches is
sufficient to ensure the rearrangeability of N inputs to N outputs

was published in 1964 [3]. This article draws heavily on group
theory and the concept of the partition of the set (I, 2, 3, ...,

N). The partition of a set is a finite collection of disjoint
sets whose union is the given set.

A. Consider storing the Benes transposition network of 2n-i

levels as a matrix. (Storing the n-level Omega network is a

special case of this.) On the first row, store the vector (0, i,
2, ..., N-l). On the second row, s ore the vector (0,2,1,3,4,6,

...,N-l), taking the first two even numbers, then the first two

odd numbers, then the next two even numbers, until all N elements
of the vector are stored. On the ith row, for i less than n,

store the first 2 i-I even element, then the first 2 i-I odd ele-

ments and alternate until all the _lements of the set (0, I, ½_ilN-l) are used up. For the nth, and middle row, store the
even elements, then the 2n-I odd elements. (The first half of the

N=I6 Benes network is shown in Table 1.5.) For row i between n

and 2n-l, store just as the 2n-ith row. Now to compute the path

that a given address would follow in the absence of other

addresses, _dopt the following procedure.
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BENES(FI2)

Skip Offset Successes Options Comments

2 3 251

2 4 246

3 4 512

3 5 512

5 6 413
5 357 382

8 357 139

128 357 230
128 357 266

256 357 233

518 357 512

520 357 512

Skip Offset

OMEGA (FI3)

BR

.... 199

.... 211

1 0 32
1 1 36

2 0 63
3 0 85

4 0 78

13 357 iii
128 357 279

12_ 357 259

210 357 307

260 0 79

Magic

Magic

Magic
Magic

Successes Options Comments

R Seed=O013

BR & 2 Seed=0013

Worst

BR

Note: Standard deviate/on of N Count
is _N

Table 1.4

Simulation of Skip Distances

1-12



i

i

0 1 2 3 4 5 6 7 8 9 i0 ii 12 13 14 15

0 2 1 3 4 6 5 7 8 i0 9 ii 12 14 13 15

0 2 4 6 1 3 5 7 8 10 12 14 9 ii 13 15

0 2 4 6 8 i0 12 14 1 3 5 7 9 ii 13 i_

Table 1.5

First Half of Stored Benes

+-

+ I!

I i
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Experiments on the CN Simulator confirm this hypothesis. However,
it is not intuitively clear why this is the case, nor is a strict

correspondence between offsets obvious. In part, the answer lies

in the fact that to each skip distance there corresponds a cyclic

ordered set of permutations on the outputs (0, 2, 4, 6, 8, 10, 12,

14, i, 3, 5). This set is itself the correspondence set for skip
i.

For skip 5, the ordered set is (0, i0, 5, 8, 3, 6, i, 4, 14, 2,

12). For skip 6, the ordered set is (0, 12, 2, 14, 4, i, 6, 3, 8,

5, I0). These sets are the same, save that they are oppositely
ordered).

A natural question which arises in this analysis is whether there

are any skip distances which are particularly bad. Of course, the

very worst case will be a skip of 521--which corresponds to a skip

of zero--in which case all the processors will attempt to access
the same memory module. Other than this, and this seems to be a

rather important fact, the greatest number of blocks occurs in an
8 x 11 Omega for skip distances of one, especially those with

small even offsets. Table 1.2 verifies this. Furthermore, for

all the trials which have run on the simulator, skip = i, offset =

0 was the worst, with only 32 successes in 512 trials. The reason

for this is as follows: the second level of an unpacked Omega

will account for blocking of half the inputs if inputs from
adjacent nodes wish to access the same quadrant of the network.
similarly, if adjacent nodes on the next level wish to access the

same octant of the network, half this number will De blocked.

This halving process, as the addresses are "funneled together",

continues until they are half-way through the network, at which

point they are "funneled back out" to their separate outputs. For

odd offsets, the funneling process does not begin until the third
level. For larger offsets, the mod521 configuration of the

unpacked Omega tends to randomize the pattern.

It is not yet clear just what the overall relation between block-

ages and skip distances actually is; largely this problem is
irrelevant. It could be solved empirically by running, say two

hundred simulations picked from the skip distance range (0,260)

for offsets (0,I) and plotting a curve. (Results from a few

selected simulations are offered in Table 1.4.) One would expect

some kind of periodicity. But in fact, every such experiment
which has been run for an Omega network has resulted in a success

rate less than that for random requests (although for Benes net-

works skips 1 and 3 are "magic"), and significantly, it seems that

the bit reversal procedure used for mapping (see Appendix B for

details) is tantamount to a 'pseudo-randomization' of sorts. If

this randomization is hardwired, no skip distance should be parti-
culazly bad.
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i. Initialize the input node, column j.
2. If the control bit for the ith level calls for "go straight",

then the node for level i + 1 will be found on row i+l,

column j.
If the control bit calls for a "go across" and

a. j is even, then the node for level i+l will be found
on row i+l, column j+l, or

b. j is odd, then the node for level i+l will be found

on row i+l, column j-l.

3. Let j=node number and increase i.
4. If i is less than 2n, go to 2.

The value of the node number for each i describes that path taken

by the given address.

B. Suppose one wishes to know whether two given input-ouput pairs
u-w and v-x result in a block for an Omega network. Let U be the

set (0, i, 2, ..., N-l). Let i be the level number for i=0, ...,

n. Partition U sequentially into 2n/2 n-l, 2-by-2 n-I matrices.

Call these_...j-_.2_jz4'. These are the input matrices.. Also parti-

tion U into _n/2n-l,2n-i-by-] matrices Call theseO_ 0_,/2"-_
° _J"" "I _ _ .

These are the output matrices. Then for all (u,. v, w, x), if

there exists a j such that u is an element of __/ and v is an
element of O_ and there exists a k such that w is an element of
0 h and x is an element of 0 4 , then u-w blocks v-x by stage i.

Symbolically, this condition can be written_

• °

The partition sets for n=4 are given in Figure 1.4. For example,
note that 4-8 blocks 7-11 since 4 and 7 are elements of I _ and 8

and ii are elements of O _ . So 4-8 blocks 7-11 by level 2.

Note also that i is not unique but is satisfied for any i greater
than solve minimum i. To make i equal to this minimum i, require

that u and v be from different columns of /J.

This can be proven by considering, for the ith level, the ith most
significant bit. If the ith most significant bit of the two

inputs to any switch are the same, i.e.

XXXX...0i..-__ or XXXX...Ii'--__

XXXX...0i... - XXXX...Ii... -

where X's and 's represent bits that may assume any combination
of l's and 0's, then there will be a block. Bits which are more

significant than i can occur in all possible combinations, but
these bits determine which inputs the addresses could have come

1-15



i=0 I,_=(0) I:ffi(1) I:ffi(2) _=(3) _}=(4)
_:=(5) _,=(6) I;=(7) _=(8) _ffi(9)
_=(I0) I_=(ll) _=(12) _=(13) _ffi(14) _=(15)

= (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 15)

i = 1 I;=(0 i) Ii=(2 3) _=(4 5) I_=(6 7)

=(8 9) _=(10 Ii) I_=(12 13) I_=(14 15)

0"= (0,1,2,3,4,5,6,7) 0'.= (8,9,10,11,12,13,14,15)

i21 IiiiC i
0_ = (0,1,2,3) 0_ = (4,5,6,77 0_= (8,9,10,11)

0_ = (12,13,14,15)

_J
0,_=(0,i) 0_=(2,3) 0_=(4,5) ..9=(6,7)

0_=(8,9) 0_=(i0,ii) _= (12,13) _=(14 15)

Figure 1.4
Partition Sets for n=4
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from. Thus a pairing between a set of output addresses and a set
of input addresses can be formed. While this is not a formal

proof, this result can be shown combinatorically by enumeration.

C. Suppose one wishes to know the mean probability that two
random addresses will result in a block. This is a function of a

relation between two inputs which is called their 'distance'. Con-

sider input 0. There is a 1/2 probability that it will be blocked
by input 1 since this blocking occurs on the first level. There

is a 1/4 probability that it will be blocked by inputs 2 or 3;

this would occur on the second level. For inputs 4, 5, 6 and 7

the probabilitlty is 1/8 since the level is the third. In
general, the distance for input 0 is the level on which the two

inputs could block, so call it i. Then the probability that the

inputs will block on level i is (i/2) I.

Now assumedly there is a function g(x,y) of any two input numbers

(x,y) such that,Li=g(x!y). Then taking the average value of the
function_C3/_v)_=(_)_C_y) the probability of a block is obtained.
But for this to be a truly random distribution, one must average

over both x and y as shown in Equation 1.3.

Now, for x=0, _ Y

(I.3)

x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y I 2 3 4 5 6 7 8 9 10 11 12 13 14 15

g(x,y) 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4

For x=0, there will be in general 2_ values of g(x,y)=z.

Now pick some other random value of x, say x=4.

x 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

y 0 1 2 3 5 6 7 8 9 i0 II 12 13 14 15

g(x,y) 3 3 3 3 1 2 2 4 _ 4 4 4 4 4 4

so, again, there are 2 z-I values of g(x,y). We thus have a basis

for a change of variables, _ _- =_r.,_)l_-;4
(I.4)Z(_ 4_

where z=g(x,y) andZIM_=2"';_. Now f_') just equals (i/2)z; and

the limits of the summahion are from 1 to n, where n is the number
of levels.

(1.5)
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then .
which depends only on n. For n=9, (_) = 9/1022.

(I.6)

(I.7)

1.6 TERM ANALYSIS FOR RANDOM BLOCKING

Consider a packed Omega. The blocking probability for two inputs

(i,j) with random addresses is given by f(i,j) = (i/2)g(x,Y;.
Thus a matrix can be made out of the f(i,j)'s. In general, the

f(i,j)'s will either be 1/2, 1/4, 1/8, 1/16, or 0. In particular,

if any input k has no request, then both f(k,j)=0 and f(i,k)=0.

Also, f(i,i)=0.

Here notation will be changed so that it is more in line with

symbolic logic and set theory. Let aiu = f(i,j) and not-aij=l
-f(i,j). Now consider the prospects for adding one more input to
the net. Inputs can be added from left to right to see when it

becomes probable that the new input is blocked. The probability

that input 0 is blocked by 0, a00, is zero, of course. The first
term will be the probability that 1 is blocked by 0, (i.e. al0,

which equals 1/2 for a packed and 0 for an unpacked Omega). The
second term will be the probability that 2 is blocked by 0, but 1

is not, (i.e. p_txml--)_)=_a_-_m ) which is 1/4 x 1/2 for a

packed Omega. The third term will be probability that 1 blocks 2
given not-a20 and not-al0, (i.e. P/_,l_A_=_a_m_2o=_'_
The next term will be

and the term after that is

}gCW31 ] -, o¢.m A "-, _-_.a-', o_ 2%-', (X.,._').

In general, the kth term will be the product of k such atomic
units, of which k-i are negated. In the iterative procedure, one
would have a 'tail' to the end of which the negated form of the

last atomic unit is multiplied before multiplying by the new

atomic unit obtained from the matrix. The kth term is then summed

to the present value of the first k-I terms.
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When in the course of this procedure the current value of this
summationbecomesgreater than 1/2, the procedure may be aban-
doned. The fact that the probability rises above i/2 meansthat
it is expected that this new element will be blocked. A new
procedure is now adopted, in an attempt to find the probability
that any two elements are blocked. The first two terms are zero.
The third group of terms is_,,_-_._,,_¢_-_. The fourth group
of terms will be _o_ -7_t _2o _¢_-_oc_o _ + oL_¢,_ -7_s_ _¢_ •

The fifth group will be_,_ m-7 _-_,_+_¢j,_z_-,_-v_e_-v_'_-_
_a_+_c_-_-,a_. In general, for the kth term group, there

will be k-i subgroups, each composed of k products. The k
products will be given by the permuting of one addtional

affirmative over the smallest k-i matrix element, on one side of

the diagonal. The smallest elements are defined by the fact that

the left subscript must be less than or equal to that of the new)
and the right subscript must be less than it. If the sum of

these terms at any time is greater than 1/2, this procedure, too,

is terminated and a procedure which tests for three blocks is

impl emen ted.

In general, in a procedure !ooking for i blocks, the kth group of

terms will have(_,_.;/_'-_)!_-_)_ subterms, each of which is a per-

mutation of i-i affirmative _ 's over k-I _t 's. When i is large
enough so that the whole network is done while the sum is less

than 1/2, then this is just the expected blocking rate. Since
there are on the order of .5n 2 groups of te_ms (for half the

atomic coefficients in the squa_'e array, with{_-_)_z/_z'-_)/{/_-4")/.

subterms in each group, then there are at least_N'C_'-_).;/Cd"-,)/_-_)/(_F-_).;
operations in this procedure. For large problems there are many

blocks, and i may be on the order of 100, making the computation

even more prohibitive than that suggested in Section 1.4.

However, there may be a "coarser" way to estimate the network
blocking We have noted that there are k atomic elements in each

of the/2-_)//_L-_._(/_-_/ subgroups. The minimum number of elements

in any subgroup is i, for i blockages. For the kth group, each of
these subgroups will be composed of i affirmative _ 's and k-i

negative 's. Now the average value of one of these _ 's i8 as

shown in Section 1.5, n/2(2n-l) or log2N/2(N-l). Similarly, one
could show that the average value of the function l-(I/2)g_x,Y) is

l-(log2N/2(N-l)). (Assume that this average value of each of the
terms found in this way will be good estimators for the product.

Basically this average says that the typical block will occur at

the log2(2(N-l)/n)th level. For n=9, this is about 6. In this
way, the computation can be drastically reduced.) Each of these

groups can be written as a product of one of these estimator terms

times the number of such terms. And since there are such groups
for all k from i to N, we are left with the sum

- -

1-19



which depends only on i and N. _? largest such term occurs for
k=i, and is just (l-(log2N/2(N-I) (Since E(i in N) is greater
than its first term, a good way to _ake a lower limit

approximation for i i_ to use the least i such that this term is

less than 1/2. For N=512, this is just (1013/1022)i.) The last

and smallest term in the series for k=N, which we call Emin(i in
N) may be written

Note the resemblance between the part in brackets and the form-

ula in Section 1.4, with N-i corresponding to x. One major dif-
ference between the two is that the 'i' in the former is the
number of blocks, while the 'x' in the latter is the number of

successes.

1.7 STATE OF THE CONNECTION NETWORK

One of the networks proposed is the two-layer unpacked Omega with

bit reversal and alternating priorities between layers and cycles.

In fact, it is suspected that a hardwired processor-to-input

randomization would work as well as a bit reversal. Any priority
rule that favors the left port will favor addresses going to the

left side of the network, and vice versa. However, a random

priority rule, where the priority is determined by a random number

from 1 to 4 (favoring left, right, straight-through, and crossed)
would probably be optimal. One way to improve the priority rules

is to add a bit to the address which says: "I am a success so
far." Then if there is a conflict, and if one or the other of the

addresses has say a 1 in this place, then the switch will give
that addresss the priority.

The Benes network now appears suboptimal. In the absence of

overall control, an algorithm must be developed which produces an
address from the first half of the network. The algorithm studied

obtained the address through an "exclusive or" on the processor

and memory module numbers. This algorithm has a serious flaw in

it for any unpacked Benes. As long as the ports are unpacked,
both processor and EM numbers are even--except for the nine

odd-valued memory module numbers. The fact that the least

significant bit is zero implies that the addresses go straight

through on the first level; this in turn implies that at the
middle level of the network all the addresses are in the left half

of the switches. Thus, at the middle layer, the addresses are

're-packed'. Also, at every level prior to the middle one, only

half the switches are used. Needless to say, this seriously
degrades the simulation of any unpacked Benes. However, this
problem should be rectifiable with a bit reversal.
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Part of this analysis considered various alternative network
organizations in case additional throughput is required. Oneway
to improve performance is to 'double-unpack' the inputs, so that
there is only one address for every four ports. This implies, as
well, adding another level to the network. To comparethe effect
of doubling the numberof ports with that of adding another layer,
a packed two-layer Omegaand a packed one-layer Omegawith 256
requests were simulated. If the simulation is to scale properly,
one would expect to find half as manysuccesseswith 256 inputs to
512 ports as with 512 inputs to 1024 ports. In simulation, the
packed two-layered Omegawith 256 inputs produced 70 successes.
Thus in performance a double-unpacking appears equivalent to
doubling the numberof layers. This further suggests that for the
first cycle the success rate dependsonly on the number of input

ports for an Omega network.

Still probably the best way to reduce blockages experienced in the
networks studied is to add more layers. As was previously noted,

it is deceptive to think in terms of "Layers". Any n-layered

network of 2 x 2 switches can actually be represented as one layer
of 2n x 2n switches. When Benes proved his theorem, he did so for

any Benes network of square switches, i.e., n x n. Now for an

Omega Network, the address generates the path at the switch by a

simple procedure of left-right responses. And while it may be
difficult to construct a local control procedure f_r binary

addresses or odd-valued n x n switches, equivalences can be set up

between n inputs and n outputs for a 2n x 2n switch. The result-

ing logic at each switch would be more complicated in this case.
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APPENDIXJ

DESIGNGUIDELINESFORNASFPROCESSINGSYSTEM
J.] SCOPE

This document delineates general guidelines that may be used in
the design, fabrication and as%emb]yof the hardware required for
the Numerical AerodynamicSimulation Facility (NASF) Processing
System.

J.2 DESIGN CONTRAINTS

J.2.1 Environmental

The environmental limits specified represent the conditions nor-

mally found in most laboratory or office buildings deemed suitable

for professional employees and assumes that air conditioning and
other controls have been provided to attain these levels. It is

incumbant on the design of the FMP hardware not to adversely
affect this environment.

J.2.1.1 Atmospheric Conditions

Table J.] defines the limits of temperature, humidity, and alti-

tude for operatzng, non-operating, storage and shipping condi-
tions.

Dust levels may exist to the extent resulting from a filtered air

conditioning system meeting NBS blackness test with a minimum

rating of 50% efficiency using atmospheric dust.

J.2.1.2 Mechanical Stress

Table J.2 delineates the mechanical stress levels for the equip-

ment installed (operating and non-operating) and in shipping con-
tainers.

Shock is defined as a non-periodic mechar, ica] pulse of large ampli-
tude about a fixed point.

Vibration is a steady state periodic or random oscillation which

may have a sinusoida] or a complex waveform and may have a single
frequency or broad spectrum.

J.2.].3 Acousfic Noise

The equipment should not be affected by exposure to sound pres-
sures of 130 dB* (c) for a period of 30 minutes.

* Ref. 2 x 104 dynes/cm 2
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TABLE J.l ATMOSPHERIC CONDITIONS

OPERATING NON-OPERATING
SHIPPING AND

STORAGE

(Installed) (Installed)

DRY BULB TEMP. 18oC to 30°C -40°c to 50Oc -40°c to 70Oc

WET BULB TEMP. NA 30Oc Max 40Oc Max.

RELATIVE HUMIDITY 40% to 60% 90% Max. 95% Max.

ALTITUDE 0-3 km 0-3 km 0-15 km

TABLE J.2 MECHANICAL STRESS

SHOCK

Peak Acceleration

Duration

Waveshape

Force application

VIBRATION

Frequency Range
Peak Acceleration

Force Application

Operat ing and

Non-Oper at ing

(Installed)

.5g

.I to 1 see.

½ sine
Hot izont al

5 %o 500 Hz

.Ig

30rthogona3 axes

Shipping and

St ol age

(In Shipping container)

5g
5 to 50 millisec.

½ sine

30rthogonal axes

5 to 500 Hz

1.5 g

30rthogonal axes
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J.2.].4 Radiation

The equipment should not be. affected by radiation of the following
intensities

(l) Stray magnetic fields
(2) ExternaI RFI

.0005 tes]a

3.0 Vo]t/Meter 500 kHz to
10GHz

J.2.i. 5 Static Electricity

Externally exposed hardware should be immune to static electric

discharges of up to i0 kilovolts from 500 pF through 50 ohms.

J.2.1.6 Fungus

Fungus inert parts and materials should be used to the greatest
extent possible. Parts or materials not in,,rt to fungus growth

should be treated with fungicidal material. No damage to parts or
material should result from treatment with fungicidal material or

fungicidal coating.

J.2.2 Electromagnetic Interference Control

The NASF equipment should be compatible with: a) other electronic

devices operating in the immediate area, and b) communications
services. Control of the electromagnetic emanations from the NASF

equipment must b,, an integral part of overall system design.
Based on the nature of the NASF design and mission, conducted and

radiated emanations shall comply with the limits illustrated on

Figures J.l and J.2 respectively.

J.2.3 Acoustic Noise Control

Personnel should be provided an acoustical environment which will
not interfere with, or in any way degrade overall NASF effective-

ness. To ensure compliance with this requirement, acoustic noise

levels of the NASF Processing System should not exceed the fol-

lowing criteriaz

EQUIPMENT AREAS 75 dB (A) *
68 dB SIL **

OPERATOR AREAS 65 dB (A)
58 dB SIL

* dB(A):
Meter.

** dBSIL:

I/O AREAS (ELECTRO
MECHANICAL DEVICES)

80 dB (A)

71 dB SIL

Measurement using (A) weighting network on Sound Level

Speech Interference Level,- The arithmetic average of
the sound-pressure levels in the octaw bands centered

on 500, i000, and 2000 Hz.
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,45

_ 7O

1.6

Frequency MHz

3O

a) Narrowband Limit - Average Detector

>

i00- I

90" I

80.

70

91 91

.45 1.6 30

Frequency MHz
b) Broadband I.imlt - OuasiDeak Detector

* AVERAGE DETECTOR: A detector, the output voltage of which
approximates the time average value of the envelope of an applied
signal. Refer to ANSI C63.2-197X

** QUASIPEAK DETECTOR: A detector having specified electrical
time constants, which, when regularly repeated pulses of constant
amplitude are appl_ed to it, delivers an output voltage which is a
fraction of the peak value of the pulses, the fraction increasing
towards unity as the pulse repetition rate is increased. Refer to
CISPR Publications, i, 2, and 4.

Figure J.l Conducted Limits

J-4



0

!

i

4
>

@
>
0

5O

4O

30

20

i0

3_

i I

30 88 216 i000

Frequency - MHz

Broadband Limit - Quasipeak Detecto[

Narrowband Limit - Quasipeak Detector

I Figure J.2 Radiated Limits (30 Meters)

J-5



J.2.4

Table J.3 and J.4 delineate the minimum quality ]eve] of the power
tha_ should be available for the NASF Processing System. The

Processing System should have its own power control and distri-

bution subsystem that will operate from this input power and

supply the appropriate power to the various hardware elements of
the processing system.

J.2.5 Design and Construction

Unless otherwise specified, the NASF Hardware should be designed
in accordance with good commercial practices.

J.2.5.] Physical Characteristics

J.2.5.].] Cabinets - Removable panels and doors should be
utilized to enclose the structure.

J.2.5.]_2 Size and _ - No single unit, cabinet or component
should excee-_ 3,600 pounds or exceed the following dimensions:

Height 72"
Width 84"

Depth 35"

The floor loading should be no more than 250 lbs/ft 2 for fully

operable equipment.

J.2.5.l .3 Marking

J.2.5.].3.] Marking of Equipment - Each major assembly shou]d be
permanently and legibly marked with the manufacturer's identifica-

tion (name, initials, trademark, code number, or symbol) serial
number, and mode] number. Permission shall be granted te the

manufacturer to place its name/symbol on the front of the equip-
ment.

J.2.5.].3.2 Marking of Controls - Controls related to the oper-

ation or conditioning of the equipment, either remotely or
locally, should be clearly identified.

J.2.5.].3.3 Marking of Subassemblies - All removable and repair-
able plug-in subassemblies should be identified and marked with a

serial number. Labels should be positioned so they can be readily
seen.
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Table J.3

Power Source Description

Total Power: 750 KVA

Frequency: 60 Hz
Tolerance: + 3%

Rate of Change: 1.5 Hz/Sec Max

Voltage: 480 3 Phase, 3 Wire plus ground
Range of slow-averaged + 10%, -15%

rms voltage (including

brown outs)

Imbulance 5% Max

Modulation 1% Max

Harmonics (total) 20% Max

Max Any Harmonic 10% Max
Deviation Factor 25% Max

D. C. Component 1% Max

J-7
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Table J.4
PowerSource Transients, Recovery and Capability

*Power Sourer) Transients

(on a._b-r afY pha-s6s)
1/2 Cye]e or Longer

Ma_fi6m Tran_,i61{t Surge

:4ax[mum T_'ansient Sag

Less Thon 1/2 C_,ele But
::fore-tl_-al_-100 _nlCrOSedbnds Maximum

Maximum Ovorvol tago

Transient volt-seconds

Maximum Transient sag peak

Maximum Undervoltagc Transient

volt-seconds

Maximum Voltage Deviation

of RFI. 10kHz or greater

Event Rate

P qwe[ Squrc9 Capahil{t_

Peak Inrush L*mit

Load Imbalance

Source rnipedanco

Cround Return Impedance

i
LEVICL _ RI'_MAR K S

To 130'_' of liominal rms I *Vol tag_, dovJatJol)s sb,_] ]

voltage reeovcrinq to }20', i b(" wlthJn th,_, limits shown
i]1 50ms or less, then wit|lin I whe, n L]R _ LItilizati.,n voltage

]I0',, in 3 see. or less i:_ within it-s tnlcrdnc(, limits

(410':, -15;' )

To 50'. of nominal rms

voltage, recovering to 70_

in 100ms or less, then to)

85? or more in 0.5 sec. or

less

150t of nominal peak voltage

(212% of menial rms vo]taqe)

provided than volt-second

limit i:, _ot exceeded

150_ of nominal volt-seconds

provided serve voltage limit

above is not exceeded

To zero volts

To zero for 1/2 cycle

400: of nomina] peak voltage I

(566[ of nominal rms voltage)

Maximum of I0 in I0 minutes

and _t ]east 6 seconds be-

twee_ maximum l_mi t events

and full recovery to speci-

fied ranq_ of rms voltage

between c,ve_t .

i

4kVA or I tn 8 x rated kVA

of load

!2S?, max or 10kVA whichever

is qr_'al_ r

Id.5_ t(_ 5% o|- Rai,,d "l_as_."

o]]_Is at the power fr_,qu(,ncy

!I.i[)_}dan('o low enou(l]l t(_ crf, dL_,

Igr<lun(l faul[ c%_rront ¢_f lO :¢

!brcak_,r tl'J[) rntinq fat qroun,|
) fault

Surge component ,_nl_'_ would

be 250 total _f oceurJnq at

wave peak

Composite wave form

Tm_)u]se component onl_,, w(.u],_

be 500_. if oceur_nq at wav_:

: peak

_Starting c_ndition fo_" nl |

ev,.nts shall b(, within sl:c.ei-

fJO(] range cf z'ms voltag_._ ,|n,]

may be at worst CdS(* 1() mdxi-

mi:,¢) the event.
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J.2.5.1.4 Accesslbl]ity - All adjustments and any other work
required after the system is assembled should be readily access-

ib]e for servicing. Special tools or other mechanical devices

required to readily and accurately adjust the equipment should be

supplied as part of the unit. The equipment should be designed to

protect operating and maintenance personnel from contact with
hazardous devices. The equipment may, however, be designed to

operate with the frame covers removed (but not necessarily meet

acoustic and EMI requirements under these conditions).

J.2.5.1.5 Grounding - Circuit grounds should be is]oated from
chassis grounds but may be connected to the chassis if required.

Ground connections to chassis should be mechanically secured by

soldered terminals and locked by means of a ]ockwasher and nut. A

chassis ground tiepoint should be provided at the power interface
of individual cabinets and major elements of the system.

J.2.5.1.6 Mechanical Operation - All controls should operate
freely and Sm0oth]y without binding, sc_*aping, or cutting. Play

and backlash should be minimized and should not cause poor contact

or inaccurate setting.

J.2.5.1.7 Transportability - The elements of the NASF Computing
System should be transportable by qualified domestic common car-

rier without damage or deterioration when packaged, preserved, and

prepared for shipment.

J.2.5.2 Materials, Processes, and Parts

J.2.5.2.1 Parts Selection - The following principles should be

utilized in parts se]ectlon:

(a) The variety and types of parts required should be kept
to a minimum.

(b) Common and regularly stocked parts should be used

whenever feasible to simplify maintenance, storage and
supply.

(c) The use of proprietary components should be avoided where

practicable.

J.2.5.3 Workmanshi_ - The equipment should be processed in such a

manner as to be uniform in quality and free from defects that will
adversely affect life, serviceability, and appearance. All metal

surfaces should be clean and free from burrs, roughness, oxide,
scales, and sharp edges. Printed circuit boards should be free

from cold soldering, corrosion, salts, smut, grease, finger
prints, flux residue, and foreign materials.

J-9



J.2.6 Pzoduct Safety

The NASF equipment should be designed and constructed so that in

normal operation and maintenance the equipment wi]] function

re]iab]y without causing injuries to persons or damage to prop-

erty, considering possible care]ess use that may occur in normal
service. Specifically, the equipment should be designed to comply

with the requirements of Underwriters Laboratories (UL) Standard

for Safety, Data Processing Units and Systems, UL 478.

J.2.7 Service Life

The intended ]ire of the system as a system is ten years. Service

life is the anticipated life of the system, as a system, without

reference to the anticipated useful life of the parts of the

system and, therefore, assumes that necessary maintenance and

repairs wi]] be performed as required.
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